

Published Manual Number/ECN: MPP60WE2AE/2006313A

- Publishing System: TPAS
- Access date: 8/1/2006
- Document ECN's: Exact

Service-
 60044WP2 Washer-Extractors

Read the
separate safety manual before installing, operating, or servicing

Please Read

About the Manual Identifying Information on the Cover

The front cover displays pertinent identifying information for this manual. Most important, are the published manual number (part number) /ECN (date code). Generally, when a replacement manual is furnished, it will have the same published manual number, but the latest available ECN. This provides the user with the latest information applicable to his machine. Similarly all documents comprising the manual will be the latest available as of the date the manual was printed, even though older ECN dates for those documents may be listed in the table of contents.

When communicating with the Milnor factory regarding this manual, please also provide the other identifying information shown on the cover, including the publishing system, access date, and whether the document ECN's are the latest available or exact.

References to Yellow Troubleshooting Pages

This manual may contain references to "yellow pages." Although the pages containing troubleshooting procedures are no longer printed on yellow paper, troubleshooting instructions, if any, will be contained in the easily located "Troubleshooting" chapter or section. See the table of contents.

Trademarks of Pellerin Milnor Corporation

The following, some of which may be used in this manual, are trademarks of Pellerin Milnor Corporation:

Ampsaver ${ }^{\text {® }}$	Dye-Extractor ${ }^{\text {® }}$	Gear Guardian ${ }^{\text {® }}$	Milnet ${ }^{\text {® }}$	Staph-Guard ${ }^{\text {B }}$
Autolint ${ }^{\text {® }}$	Dyextractor ${ }^{\text {® }}$	Hands-Off ${ }^{\text {® }}$	Milnor ${ }^{\text {® }}$	System $4^{\text {® }}$
Auto-Purge ${ }^{\text {® }}$	E-P Express ${ }^{\circledR}$	Hydro-Cushion ${ }^{\circledR}$	Miltrac	System $7^{\text {® }}$
Autovac	E-P OneTouch ${ }^{\text {® }}$	Mildata ${ }^{\text {® }}$	Miltron	Totaltrol ${ }^{\text {® }}$
CBW ${ }^{\text {® }}$	E-P Plus ${ }^{\text {® }}$			

Comments and Suggestions

Help us to improve this manual by sending your comments to:
Pellerin Milnor Corporation
Attn: Technical Publications
P. O. Box 400

Kenner, LA 70063-0400
Fax: (504) 469-1849

Table of Contents for MPP60WE2AE/2006313A 60044WP2 Washer-Extractors

Page	Description	Document/ECN
1	About This Manual	MHPHYDROAE/9541AV
2	Warranty	BMP720097/92732A
3	How to Order Parts	BMP720097R/72332A
4	Safety,,Divided Cylinder and Staph-Guard' WasherExtractors	BIUUUS27/20051111
9	About the Forces Transmitted by Milnor Washer-Extractors	BIWUUO2/20001108
11	Glossary of Tag Illustrations - Suspended WasherExtractors	MSIUPUTGAE/2003026V
17	Avoiding Damage from Allied Remote Chemical Delivery Systems	BIWUUIO3/20030306
23	Section 1: Service and Maintenance	
24	Lubrication and Preventive Maintenance for Hydrocushion Machines	MSSM0201CE/2004046V
34	Lubricants for Milnor Machines	mssm0132AE/9903AV
35	Baldor Motor Maintenance	mssmo274AE/9731AV
39	Fastener Torque Requirements	MSSM0101CE/9906AV
58	General Assembly	BMP060019/2006185B
63	Section 2: Shell and Door Assemblies	
64	60" \& 72" WEH - Shell Door Assembly	BMP780109/81433B
65	Parts List - Shell Door Assembly, 60 \& 72 WEH	BMP780109R/81433A
67	Air Operated Vacuum Pump for Door Seals	BMP810002/81073A
68	Door Latch Assembly	BMP701316/98183V
69	Cylinder Assembly - 6036, 6044, \& 7244 WE2	BMP780043/79221B
70	Parts List - Cylinder Assembly, 60 \& 70 WE2	BMP780043R/86387A
73	Section 3: Drive Assemblies	
74	Drive Base Components on Hydro-Cushion Machines	MSSMA407BE/85047V
84	Drive Assembly - 6036WE2, WE3 \& 6044WE2, WE3	BMP840021/91107D
85	Parts List - Drive Assembly 6036WE2,WE3, 6044WE2,WE3	BMP840021R/2006146B
86	Jackshaft Bearing Assembly - 5238, 6036, 6044, 6442 \& 7244	BMP820109/89253C
87	Parts List - Jackshaft Bearing Assembly (52, 60, 64, 72)	BMP820109R/89253A
89	Reducer Air Seal	BMP700392/2002496V
90	Autospot Drive Assembly	BMP701411/2000133V
92	Air Operated Autospot Assembly - 60044WP2/WP3 and 72044WP2/WP3	BMP710043/96216V
93	Sensing Unit - Airop Autospot	BMP710042/76143D
94	Parts List - Sensing Unit, Airop Autospot	BMP710042R/85353A
95	Brake Assembly	BMP710022/2006155B
98	Centrifugal Switch Assembly	BMP701195/2000242V

Table of Contents, cont.

Page	Description	Document/ECN
100	Centrifugal Switch Operation	BMP701 196/81271A
101	V-Belt Tension Adjustments for 48", 52", 60" and 72" Washer-Extractors	MSSMA405AE/8737BV
105	Section 4: Bearing Assemblies	
106	Main Bearing and Seal Replacement for Divided Cylinder Machines	MSSM0303AE/8451BV
116	Main Shaft Bearing Assembly	BMP840039/2006285B
119	Section 5: Frame, Pivots and Suspension	
120	Hold Down Adjustments	BMP701672/2006295B
121	Suspension Adjustments for Divided Cylinder Machines	MSSMO302AE/8414BV
127	Suspension Cylinder Assemblies	BMP701408/2006275B
129	Suspension Cylinder Locations	BMP701235/2006304A
131	Section 6: Control and Sensing Assemblies	
132	Vibration Safety Switch Adjustments	MSSMA408BE/9273BV
134	Excursion Switch	BMP060011/2006155B
135	Vibration Safety Switch	BMP910038/2006155B
136	Water Level Float Chamber	BMP810111/2003262V
138	Water Level Switch Assembly	BMP800186/2002226V
139	Section 7: Chemical Supply Devices	
140	Rules for the Field Installation of Pumped-Type Liquid Supply Systems	MSSM0213AE/89457V
142	Peristaltic Connection	BMP060012/2006155B
144	Supply Injector - 6036, 6044 \& 5238	BMP700940/97287V
147	Section 8: Water and Steam Piping Assemblies	
148	Water Inlet	BMP060013/2006175B
150	Cooldown Inlet	BMP060017/2006175B
152	1.5" Siphon Breaker \& Scupper	BMP060016/2006182B
153	Steam Inlet	BMP060018/2006175B
156	Universal Actuators \& Mounting Hardware for Watts Ball Valves - New Pivot	BMP920005/96067V
159	Watts Ball Valves and Repair Kits	BMP920007/96066V
161	8" \& 10" Stainless Dump Valve	BMP780095/2006185B
163	Section 9: Pneumatic Piping and Assemblies	
164	Servicing Air Cylinders	MSSM0130AE/9313AV
166	Air Cylinder Assemblies	BMP830078/2005525B
169	3 Way Pilot Valves	вмP900032/91182V
170	Asco 3-way Solenoid Valves	BMP701359/97086V
172	Pressure Regulators	BMP900031/96081V
174	Quick Exhaust Valves	BMP701406/2002382V
176	Air Cylinders for 2"Watts Ball Valves	BMP920006/2000133V

ABOUT THIS MANUAL

Scope-This instruction manual is intended to provide preventive maintenance, service procedures, and mechanical parts identification for your machine. See the safety manual for safety instructions before installing, servicing, or operating this machine. See the installation guide for facility requirements, installation instructions, and assembly instructions. See the operator guide for operator instructions. See the reference manual for programming, operating, and troubleshooting instructions. See the schematic manual for electrical parts identification and electrical troubleshooting.
Manual Number/Date Code (When To Discard or Save)—The manual number/date code is located on the inside front cover, upper right corner just above the manual name. Whenever the manual is reprinted with new information, part of this number changes. If the date code after the " ρ " changes, the new version applies to all machines covered by the old version, but is improved - thus the old version can be discarded. If the manual number before the " $/$ " changes, the new manual covers only new machines. Example: Discard MATMODELAE/8739CV when MATMODELAE/8739DV is received (minor improvements). Also, discard MATMODELAE/8739DV when MATMODELAE/8746AV is received (major improvements). But keep MATMODELAE/8746FV when MATMODELBE/8815AV is received, since the new manual no longer applies to machines originally shipped with the old manual.

Documents and Change Bars-The individual documents comprising this manual use the same revision criteria as the manual. Text documents also display change bars. Example: When section MSOP0599AE/9135BV becomes MSOP0599AE/9135CV, change bars with the letter "C" appear next to all changes for this revision. For a major rewrite (e.g., MSOP0599AE/9226AV), all change bars are deleted.

For Assistance-Please call:

Pellerin Milnor Corporation
Attn: Service Department
P. O. Box 400

Kenner, LA 70063-0400

Phone: (504) 467-9591
Fax: (504) 467-9777

Trademarks of Pellerin Milnor Corporation-The following, some of which may be used in this publication, are trademarks of Pellerin Milnor Corporation:

Ampsaver ${ }^{\text {® }}$	CBW ${ }^{\circledR}$	Gear Guardian ${ }^{\circledR}$	Milnet ${ }^{\text {® }}$	Staph-Guard ${ }^{\circledR}$
Autolint ${ }^{\circledR}$	Dye-Extractor ${ }^{\circledR}$	Hands-Off ${ }^{\circledR}$	Milnor ${ }^{\text {® }}$	System 4^{\circledR}
Auto-Purge ${ }^{\circledR}$	Dyextractor ${ }^{\text {® }}$	Hydro-Cushion ${ }^{\circledR}$	Miltrac	System $7{ }^{\text {® }}$
Autovac	E-P Plus ${ }^{\circledR}$	Mildata ${ }^{\circledR}$	Miltron	Totaltrol ${ }^{\circledR}$

PELLERIN MILNOR CORPORATION LIMITED STANDARD WARRANTY

We warrant to the original purchaser that MILNOR machines including electronic hardware/software (hereafter referred to as "equipment"), will be free from defects in material and workmanship for a period of one year from the date of shipment from our factory with no operating hour limitation. This warranty is contingent upon the equipment being installed, operated and serviced as specified in the operating manual supplied with the equipment, and operated under normal conditions by competent operators.

Providing we receive written notification of a warranted defect within 30 days of its discovery, we will - at our option - repair or replace the defective part or parts, FOB our factory. We retain the right to require inspection of the parts claimed defective in our factory prior to repairing or replacing same. We will not be responsible, or in any way liable, for unauthorized repairs or service to our equipment, and this warranty shall be void if the equipment is repaired or altered in any way without MILNOR's written consent.

Parts which require routine replacement due to normal wear - such as gaskets, contact points, brake and clutch linings and similar parts - are not covered by this warranty, nor are parts damaged by exposure to weather or to chemicals.

We reserve the right to make changes in the design and/or construction of our equipment (including purchased components) without obligation to change any equipment previously supplied.

ANY SALE OR FURNISHING OF ANY EQUIPMENT BY MILNOR IS MADE ONLY UPON THE EXPRESS UNDERSTANDING THAT MILNOR MAKES NO EXPRESSED OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR USE OR PURPOSE. MILNOR WILL NOT BE RESPONSIBLE FOR ANY COSTS OR DAMAGES ACTUALLY INCURRED OR REQUIRED AS A RESULT OF: THE FAILURE OF ANY OTHER PERSON OR ENTITY TO PERFORM ITS RESPONSIBILITIES, FIRE OR OTHER HAZARD, ACCIDENT, IMPROPER STORAGE, MISUSE, NEGLECT, POWER OR ENVIRONMENTAL CONTROL MALFUNCTIONS, DAMAGE FROM LIQUIDS, OR ANY OTHER CAUSE BEYOND THE NORMAL RANGE OF USE. REGARDLESS OF HOW CAUSED, IN NO EVENT SHALL MILNOR BE LIABLE FOR SPECIAL, INDIRECT, PUNITIVE, LIQUIDATED, OR CONSEQUENTIAL COSTS OR DAMAGES, OR ANY COSTS OR DAMAGES WHATSOEVER WHICH EXCEED THE PRICE PAID TO MILNOR FOR THE EQUIPMENT IT SELLS OR FURNISHES.

WE NEITHER ASSUME, NOR AUTHORIZE ANY EMPLOYEE OR OTHER PERSON TO ASSUME FOR US, ANY OTHER RESPONSIBILITY AND/OR LIABILITY IN CONNECTION WITH THE SALE OR FURNISHING OF OUR EQUIPMENT TO ANY BUYER.

How to order repair parts

Repair parts may be ordered either from the authorized dealer who sold you this machine, or directly from the MILNOR factory. In most cases, your dealer will have these parts in stock.

When ordering parts, please be sure to give us the following information:

1. Model and serial number of the machine for which the parts are required
2. Part number
3. Name of the part
4. Quantity needed
5. Method of shipment desired
6. In correspondence regarding motors or electrical controls, please include all nameplate data, including wiring diagram number and the make or manufacturer of the motor or controls.

All parts will be shipped C.O.D. transportation charges collect only.

Please read this manual

It is strongly recommended that you read the installation and operating manual before attempting to install or operate your machine. We suggest that this manual be kept in your business office so that it will not become lost.

PELLERIN MILNOR CORPORATION

P.O. BOX 400, KENNER, LA., 70063-0400, U.S.A. FAX: Administration 504/468-9307, Engineering 504/469-1849, Service 504/469-9777

Safety—Divided Cylinder and Staph-Guard ${ }^{\text {TM }}$ Washer-Extractors

1. General Safety Requirements-Vital Information for Management Personnel [Document Biuvus04]

Incorrect installation, neglected preventive maintenance, abuse, and/or improper repairs, or changes to the machine can cause unsafe operation and personal injuries, such as multiple fractures, amputations, or death. The owner or his selected representative (owner/user) is responsible for understanding and ensuring the proper operation and maintenance of the machine. The owner/user must familiarize himself with the contents of all machine instruction manuals. The owner/user should direct any questions about these instructions to a Milnor® dealer or the Milnor ${ }^{\circledR}$ Service department.

Most regulatory authorities (including OSHA in the USA and CE in Europe) hold the owner/user ultimately responsible for maintaining a safe working environment. Therefore, the owner/user must do or ensure the following:

- recognize all foreseeable safety hazards within his facility and take actions to protect his personnel, equipment, and facility;
- work equipment is suitable, properly adapted, can be used without risks to health or safety, and is adequately maintained;
- where specific hazards are likely to be involved, access to the equipment is restricted to those employees given the task of using it;
- only specifically designated workers carry out repairs, modifications, maintenance, or servicing;
- information, instruction, and training is provided;
- workers and/or their representatives are consulted.

Work equipment must comply with the requirements listed below. The owner/user must verify that installation and maintenance of equipment is performed in such a way as to support these requirements:

- control devices must be visible, identifiable, and marked; be located outside dangerous zones; and not give rise to a hazard due to unintentional operation;
- control systems must be safe and breakdown/damage must not result in danger;
- work equipment is to be stabilized;
- protection against rupture or disintegration of work equipment;
- guarding, to prevent access to danger zones or to stop movements of dangerous parts before the danger zones are reached. Guards to be robust; not give rise to any additional hazards; not be easily removed or rendered inoperative; situated at a sufficient distance from the danger zone; not restrict view of operating cycle; allow fitting, replacing, or maintenance by restricting access to relevant area and without removal of guard/protection device;
- suitable lighting for working and maintenance areas;
- maintenance to be possible when work equipment is shut down. If not possible, then protection measures to be carried out outside danger zones;
- work equipment must be appropriate for preventing the risk of fire or overheating; discharges of gas, dust, liquid, vapor, other substances; explosion of the equipment or substances in it.
1.1. Laundry Facility-Provide a supporting floor that is strong and rigid enough to support-with a reasonable safety factor and without undue or objectionable deflection-the weight of the fully loaded machine and the forces transmitted by it during operation. Provide sufficient clearance for machine movement. Provide any safety guards, fences, restraints, devices, and verbal and/or posted restrictions necessary to prevent personnel, machines, or other moving machinery from accessing the machine or its path. Provide adequate ventilation to carry away heat and vapors. Ensure service connections to installed machines meet local and national safety standards, especially regarding the electrical disconnect (see the National Electric Code). Prominently post safety information, including signs showing the source of electrical disconnect.
1.2. Personnel-Inform personnel about hazard avoidance and the importance of care and common sense. Provide personnel with the safety and operating instructions that apply to them. Verify that personnel use proper safety and operating procedures. Verify that personnel understand and abide by the warnings on the machine and precautions in the instruction manuals.
1.3. Safety Devices-Ensure that no one eliminates or disables any safety device on the machine or in the facility. Do not allow machine to be used with any missing guard, cover, panel or door. Service any failing or malfunctioning device before operating the machine.
1.4. Hazard Information-Important information on hazards is provided on the machine safety placards, in the Safety Guide, and throughout the other machine manuals. Placards must be kept clean so that the information is not obscured. They must be replaced immediately if lost or damaged. The Safety Guide and other machine manuals must be available at all times to the appropriate personnel. See the machine service manual for safety placard part numbers. Contact the Milnor Parts department for replacement placards or manuals.
1.5. Maintenance-Ensure the machine is inspected and serviced in accordance with the norms of good practice and with the preventive maintenance schedule. Replace belts, pulleys, brake shoes/disks, clutch plates/tires, rollers, seals, alignment guides, etc. before they are severely worn. Immediately investigate any evidence of impending failure and make needed repairs (e.g., cylinder, shell, or frame cracks; drive components such as motors, gear boxes, bearings, etc., whining, grinding, smoking, or becoming abnormally hot; bending or cracking of cylinder, shell, frame, etc.; leaking seals, hoses, valves, etc.) Do not permit service or maintenance by unqualified personnel.

2. Safety Alert Messages-Internal Electrical and Mechanical

 Hazards [Document BIUUUS11]The following are instructions about hazards inside the machine and in electrical enclosures.
WARNING 1: Electrocution and Electrical Burn Hazards-Contact with electric power can kill or seriously injure you. Electric power is present inside the cabinetry unless the main machine power disconnect is off.

- Do not unlock or open electric box doors.
- Do not remove guards, covers, or panels.
- Do not reach into the machine housing or frame.
- Keep yourself and others off of machine.
- Know the location of the main machine disconnect and use it in an emergency to remove all electric power from the machine.

WARNING 2: Entangle and Crush Hazards-Contact with moving components normally isolated by guards, covers, and panels, can entangle and crush your limbs. These components move automatically.

- Do not remove guards, covers, or panels.
- Do not reach into the machine housing or frame.
- Keep yourself and others off of machine.
- Know the location of all emergency stop switches, pull cords, and/or kick plates and use them in an emergency to stop machine motion.

3. Safety Alert Messages—External Mechanical Hazards [Document BIUUUS12]

The following are instructions about hazards around the front, sides, rear or top of the machine.
WARNING 3: Crush Hazards-Suspended machines only-Spaces between the shell and housing can close and crush or pinch your limbs. The shell moves within the housing during operation.

- Do not reach into the machine housing or frame.
- Keep yourself and others clear of movement areas and paths.

4. Safety Alert Messages-Cylinder and Processing Hazards [Document BIUUUS13]

The following are instructions about hazards related to the cylinder and laundering process.

WARNING 4: Crush Hazards-Contact with the turning cylinder can crush your limbs. The cylinder will repel any object you try to stop it with, possibly causing the object to strike or stab you. The turning cylinder is normally isolated by the locked cylinder door.

- Do not attempt to open the door or reach into the cylinder until the cylinder is stopped.
- Do not place any object in the turning cylinder.
- Do not operate the machine with a malfunctioning door interlock.
- Divided cylinder machines only-Keep yourself and others clear of cylinder and goods during inching or Autospot operation.
- Do not operate the machine with malfunctioning two-hand manual controls.

WARNING 5: Confined Space Hazards-Confinement in the cylinder can kill or injure you. Hazards include but are not limited to panic, burns, poisoning, suffocation, heat prostration, biological contamination, electrocution, and crushing.

- Do not attempt unauthorized servicing, repairs, or modification.

WARNING 6: Explosion and Fire Hazards-Flammable substances can explode or ignite in the cylinder, drain trough, or sewer. The machine is designed for washing with water, not any other solvent. Processing can cause solvent-containing goods to give off flammable vapors.

- Do not use flammable solvents in processing.
- Do not process goods containing flammable substances. Consult with your local fire department/public safety office and all insurance providers.

5. Safety Alert Messages—Unsafe Conditions [Document biuuus14]

5.1. Damage and Malfunction Hazards

5.1.1. Hazards Resulting from Inoperative Safety Devices

DANGER 7: Entangle and Sever Hazards-Cylinder door interlock-Operating the machine with a malfunctioning door interlock can permit opening the door when the cylinder is turning and/or starting the cycle with the door open, exposing the turning cylinder.

- Do not operate the machine with any evidence of damage or malfunction.

WARNING 8: Multiple Hazards-Operating the machine with an inoperative safety device can kill or injure personnel, damage or destroy the machine, damage property, and/or void the warranty.

- Do not tamper with or disable any safety device or operate the machine with a malfunctioning safety device. Request authorized service.

WARNING 9: Electrocution and Electrical Burn Hazards-Electric box doorsOperating the machine with any electric box door unlocked can expose high voltage conductors inside the box.

- Do not unlock or open electric box doors.

WARNING 10: Entangle and Crush Hazards-Guards, covers, and panels-Operating the machine with any guard, cover, or panel removed exposes moving components.

- Do not remove guards, covers, or panels.
5.1.2. Hazards Resulting from Damaged Mechanical Devices

WARNING 11: Multiple Hazards-Operating a damaged machine can kill or injure personnel, further damage or destroy the machine, damage property, and/or void the warranty. - Do not operate a damaged or malfunctioning machine. Request authorized service.

WARNING 12: Explosion Hazards-Cylinder-A damaged cylinder can rip apart during extraction, puncturing the shell and discharging metal fragments at high speed.

- Do not operate the machine with any evidence of damage or malfunction.

WARNING 13: Explosion Hazards-Inner door latches (divided cylinder machines)—A damaged or improperly seated latch can cause the inner door to open during operation, damaging the cylinder and shell. A damaged cylinder can rip apart during extraction, puncturing the shell and discharging metal fragments at high speed.

- Ensure that the inner door is securely latched when loading and unloading.
- Do not operate the machine with any evidence of damage or malfunction.

WARNING 14: Explosion Hazards-Clutch and speed switch (multiple motor machines)-A damaged clutch or speed switch can permit the low speed motor to engage during extract. This will over-speed the motor and pulleys and can cause them to rip apart, discharging metal fragments at high speed.

- Stop the machine immediately if any of these conditions occur: • abnormal whining sound during extract • skidding sound as extract ends \bullet clutches remain engaged or re-engage during extract

5.2. Careless Use Hazards

5.2.1. Careless Operation Hazards-Vital Information for Operator Personnel (see also operator hazards throughout manual)

WARNING 15: Multiple Hazards-Careless operator actions can kill or injure personnel, damage or destroy the machine, damage property, and/or void the warranty.

- Do not tamper with or disable any safety device or operate the machine with a malfunctioning safety device. Request authorized service.
- Do not operate a damaged or malfunctioning machine. Request authorized service.
- Do not attempt unauthorized servicing, repairs, or modification.
- Do not use the machine in any manner contrary to the factory instructions.
- Use the machine only for its customary and intended purpose.
- Understand the consequences of operating manually.

5.2.2. Careless Servicing Hazards-Vital Information for Service Personnel (see also service hazards throughout manuals)

WARNING 16: Electrocution and Electrical Burn Hazards-Contact with electric power can kill or seriously injure you. Electric power is present inside the cabinetry unless the main machine power disconnect is off.

- Do not service the machine unless qualified and authorized. You must clearly understand the hazards and how to avoid them.
- Abide by the current OSHA lockout/tagout standard when lockout/tagout is called for in the service instructions. Outside the USA, abide by the OSHA standard in the absence of any other overriding standard.

WARNING 17: Entangle and Crush Hazards-Contact with moving components normally isolated by guards, covers, and panels, can entangle and crush your limbs. These components move automatically.

- Do not service the machine unless qualified and authorized. You must clearly understand the hazards and how to avoid them.
- Abide by the current OSHA lockout/tagout standard when lockout/tagout is called for in the service instructions. Outside the USA, abide by the OSHA standard in the absence of any other overriding standard.

WARNING 18: Confined Space Hazards-Confinement in the cylinder can kill or injure you. Hazards include but are not limited to panic, burns, poisoning, suffocation, heat prostration, biological contamination, electrocution, and crushing.

- Do not enter the cylinder until it has been thoroughly purged, flushed, drained, cooled, and immobilized.

\section*{About the Forces Transmitted by Milnor ${ }^{\circledR} \quad$| Document................... BIWUUIO2 |
| :--- |
| Specified Date....... |
| 20001108 | Washer-extractors
 Specified Date 20001108

As-of Date 20001108
Access Date.............. 20001108
 Applicability........................... wUU}

During washing and extracting, all washer-extractors transmit both static and dynamic (cyclic) forces to the floor, foundation, or any other supporting structure. During washing, the impact of the goods as they drop imparts forces which are quite difficult to quantify. Size for size, both rigid and flexibly-mounted machines transmit approximately the same forces during washing. During extracting, rigid machines transmit forces up to 30 times greater than equivalent flexibly-mounted models. The actual magnitude of these forces vary according to several factors:

- machine size,
- final extraction speed,
- amount, condition, and type of goods being processed,
- the liquor level and chemical conditions in the bath preceding extraction, and
- other miscellaneous factors.

Estimates of the maximum force normally encountered are available for each Milnor ${ }^{\circledR}$ model and size upon request. Floor or foundation sizes shown on any Milnor ${ }^{\circledR}$ document are only for on-grade situations based only on previous experience without implying any warranty, obligation, or responsibility on our part.

1. Rigid Machines

Size for size, rigid washer-extractors naturally require a stronger, more rigid floor, foundation, or other supporting structure than flexibly-mounted models. If the supporting soil under the slab is itself strong and rigid enough and has not subsided to leave the floor slab suspended without support, on grade installations can often be made directly to an existing floor slab if it has enough strength and rigidity to safely withstand our published forces without transmitting undue vibration. If the subsoil has subsided, or if the floor slab itself has insufficient strength and rigidity, a deeper foundation, poured as to become monolithic with the floor slab, may be required. Support pilings may even be required if the subsoil itself is "springy" (i.e., if its resonant frequency is near the operating speed of the machine). Above-grade installations of rigid machines also require a sufficiently strong and rigid floor or other supporting structure as described below.

2. Flexibly-mounted Machines

Size for size, flexibly-mounted machines generally do not require as strong a floor, foundation, or other supporting structure as do rigid machines. However, a floor or other supporting structure having sufficient strength and rigidity, as described in section 3 , is nonetheless vitally important for these models as well.

3. How Strong and Rigid?

Many building codes in the U.S.A. specify that laundry floors must have a minimum live load capacity of 150 pounds per square foot (732 kilograms per square meter). However, even compliance with this or any other standard does not necessarily guarantee sufficient rigidity. In any event, it is the sole responsibility of the owner/user to assure that the floor and/or any other supporting structure exceeds not only all applicable building codes, but also that the floor and/or any other supporting structure for each washer-extractor or group of washer-extractors actually
has sufficient strength and rigidity, plus a reasonable factor of safety for both, to support the weight of all the fully loaded machine(s) including the weight of the water and goods, and including the published 360° rotating sinusoidal RMS forces that are transmitted by the machine(s). Moreover, the floor, foundation, or other supporting structure must have sufficient rigidity (i.e., a natural or resonant frequency many times greater than the machine speed with a reasonable factor of safety); otherwise, the mentioned 360° rotating sinusoidal RMS forces can be multiplied and magnified many times. It is especially important to consider all potential vibration problems that might occur due to all possible combinations of forcing frequencies (rotating speeds) of the machine(s) compared to the natural frequencies of the floor and/or any other supporting structure(s). A qualified soil and/or structural engineer must be engaged for this purpose.

Figure 1: How Rotating Forces Act on the Foundation

Figure 1 above is intended to depict both on-grade and above-grade installations and is equally applicable to flexibly-mounted washer-extractors, as well as to rigid models installed either directly on a floor slab or on a foundation poured integrally with the slab. Current machine data is available from Milnor ${ }^{\circledR}$ upon request. All data is subject to change without notice and may have changed since last printed. It is the sole responsibility of every potential owner to obtain written confirmation that any data furnished by Milnor ${ }^{\circledR}$ applies for the model(s) and serial number(s) of the specific machines.

Do not jack the machine here.
Do not lift the machine here.

Use three point or four point lifting as determined by the lifting eyes furnished. Rig the load using lifting cables of sufficient size and length to ensure cables are not over-stressed.

Stop! Read the manual first for complete instructions before continuing.

Do not lift the machine from one corner or one side edge.

This motor or pump should rotate in the direction of the arrow.

Do not start this machine until the part with this tag is installed on the machine.

Do not remove this component from the machine.

Install the appropriate part here before operating the machine.

Do not strap or chain over box

Do not pump grease here.

During drain and extract, the cylinder must rotate counterclockwise when viewed from here (rear of machine).

During drain and extract, the cylinder must rotate clockwise when viewed from here (front of machine).

Do not strike shell front of washer-extractors during fork lifting. Striking shell front will cause door to leak.

Brake assembly under machine is fragile. Forklift blades should only be placed under main structural beams

Make third (reuse) water connection here.

Hold the connection side of the valve with a wrench when connecting plumbing.

Avoiding Damage From Allied Remote Chemical Delivery Systems

Milnor ${ }^{\circledR}$ does not manufacture or supply remote chemical delivery systems and this document is meant only to illustrate some of the possible problems that can be minimized during installation of such systems by the chemical supply company. Milnor washer-extractors and CBW ${ }^{\circledR}$ batch washers (tunnels) are available with convenient inlets for such systems (see Figure 1). Most common of the types of systems currently used in commercial laundering operations are pumped chemical systems. Other types, such as constant pressure, re-circulating ring main systems have also been, and may continue to be used with Milnor equipment.

This document warns about some of the possible hazards posed by chemical systems and lists certain requirements needed to minimize those hazards. The procedures for interfacing with allied chemical systems and information pertinent to chemical use in general are provided elsewhere in the product manuals (see Note 1).

Figure 1: Pumped Chemical Inlets on CBW Batch Washer

Note 1: Misuse of laundering chemicals (such as injecting excessive concentrations of chlorine bleach or permitting acid sours to react with hypo chlorite) due to incorrect formulation can also be hazardous. Information pertinent to chemical use is provided elsewhere in the product manuals.

1. How a Chemical System Can Damage the Machine It Serves

Milnor has manufactured washer-extractors and tunnel washers with the same stainless steel specification since its founding. Every batch of steel used is certified and documented by the steel mill. Testing of samples damaged by corrosion have, in every case, proven the steel to be well within the AISI 304 specification.

Chemical products commonly found in the laundry industry, when used in established dosages and proper operating parameters, under the auspices of an experienced chemical specialist, should produce satisfactory results, with no consequential detrimental effects. The industry has published standards in Riggs and Sherrill, "Textile Laundering Technology". However, the stainless steel can be damaged and even destroyed by abnormal contact with chlorine bleach, hydrofluosilicic acid and other commonly used chemicals, as will occur if chemicals are unintentionally leaked into the machine, particularly when it is no longer in use and especially when machine surfaces are dry.

Some chemical systems have been found to permit chemicals to dribble from the supply lines, or worse, to siphon from the supply tank into the machine, during operation and long after the system is shut down-as after working hours and during weekends. If this occurs, deterioration (rusting) of the stainless steel and damage to any textiles therein will inevitably result. If this condition goes undetected, machine damage is likely to be catastrophic. No machine is immune to such damage.

CAUTION 1: Equipment and Textile Damage Hazards-Chemicals leaked into the machine, particularly when it is idle can destroy machine components and textiles left in the machine. Pellerin Milnor Corporation accepts absolutely no responsibility for damage to its equipment or to textiles therein from abnormal contact with chemicals.

- Ensure that the chemical system prevents unintentional release of chemicals.
- Inspect regularly for proper operation and evidence of damage.

2. Requirements for Chemical Systems Used With Milnor Machines

It is the responsibility of the chemical system manufacturer and supplier to ensure that their system is safe for personnel and equipment. Some important points are described below.
2.1. Ensure the System Cannot Siphon.-The supply system must be designed to counteract any siphoning that could occur as a result of having a sealed supply line between the bottom of the chemical tank and the internal machine connection at the drain trough. As shown in the Figure 2 examples, if the pump (P) and/or the valving does not provide positive closure and there is no vacuum breaker protection, siphoning is likely to occur. In each of the Figure 2 illustrations, the volume of chemical in the tank above the siphon level (S), and indicated by shading, will flow into the machine.

Figure 2: Siphoning From the Chemical Tank into the Machine

Legend
P. Pump
S. Siphon level. Shading indicates the chemical delivery line and tank content that can siphon into the machine.
T. Chemical tank
2.2. Ensure the Chemical Lines Cannot Dribble-The pumped chemical system may provide a means of positively closing the chemical line at the pump location, but not at the injection site. Hence, any concentrated chemical that remains in the injection line between the pump and the machine is free to flow into the machine. Some examples of this are shown in Figure 3.

Figure 3: Dribbling From Chemical Supply Line Into Machine (assumes positive closure at the pump)

3. Design and Installation Recommendations

It is the responsibility of the chemical system manufacturer and supplier to use whatever measures are necessary to ensure that their system is safe for personnel and equipment. The following are some of the possible methods the manufacturer or supplier may wish to use, as appropriate.
3.1. Siphoning: Positively close the line.-If the pump does not provide positive closure when the system is off, employ a shutoff valve in the line to serve this purpose.
3.2. Siphoning: Break the siphon.-Provide an air gap or vacuum breaker in the chemical delivery line. This must be located above the "full" line of the tank.
3.3. Dribbling: Flush the entire chemical delivery line.-If any concentrated chemical that remains in the injection line between the pump and the machine is free to flow into the machine, employ a system that flushes the entire line between the pump and the injection point with fresh water after each injection.
3.4. Dribbling: Locate the entire chemical line below the machine inlet.Assuming the chemical system does not retain any line pressure and that the pump provides positive closure when the system is off, locate the entire chemical delivery line below the level of the chemical inlet. An example of this is shown in Figure 4.

Figure 4: Locating a Pumped Chemical System With Positive Closure To Protect Against Machine Damage

4. Guarding Against Leaks

All personnel who may work with the chemical system (e.g., chemical system manufacturer, chemical system supplier, chemical supplier, operator, maintenance personnel) should be vigilant in observing for leaks in the system. When connecting, or reconnecting chemical lines, whether at installation, after taking samples, or when replacing components, at a minimum ensure that:

1. the proper components are used,
2. all connections are the proper fit, and
3. all components are securely connected.

CAUTION 2: Injury and Damage Hazards-Chemicals leaking from a chemical system may be corrosive or toxic. Such chemicals can injure personnel and damage equipment.

- Use care when connecting chemical lines.
- Inspect regularly for leaks.

Section

Service and Maintenance

LUBRICATION AND PREVENTIVE MAINTENANCE FOR HYDRO-CUSHION ${ }^{\circledR}$ MACHINES

General Requirements

Maintenance procedures require:

- A hand operated grease gun.
- The correct lubricants (see "LUBRICANTS FOR MILNOR MACHINES," in the Table of Contents).

Lubricant Requirements

To achieve the optimum performance and service life from the Milnor ${ }^{\circledR}$ machine and as a warranty requirement, the machine must be lubricated in strict accordance with the instructions in this section.

A DANGER A

ENTANGLE AND CRUSH HAZARD—Belts and pulleys can entangle and crush body parts.

Lock OFF and tag out power at the wall disconnect before servicing, except where specifically instructed otherwise in this section.

Insure belt and pulley guards are in place during service procedures.
Permit only qualified maintenance personnel to perform these procedures.

\triangle DANGER 4

CRUSH/SEVER HAZARD—Tilting mechanism can crush or sever parts of your body caught in them.

Install the safety stands before performing maintenance under a tilted machine.

NEVER test or operate (manually or automatically) any machine function with any portion of a person's body under the tilted machine-even if the safety stands are installed.

A DANGER A

國
CRUSH/SEVER HAZARD-Tilting machines with tilt wheels/cradles may lunge forward or rearward and even fall over if the tilt wheels at the non-tilted end are raised out of their cradles-killing/injuring personnel and/or damaging property.

NEVER manually tilt (lift) both ends of the machine at the same time. One end must always be seated in its cradle.

ALWAYS visually inspect the tilt wheels to be sure they are all fully seated in their cradles before each manual tilt up.

Hydraulic valve manual operation must be done by trained competent maintenance personnel who thoroughly understand the system and all the consequences of manual operations.

ALWAYS understand beforehand all the consequences of manually operating hydraulic valves.

Never permit operation with malfunctioning tilt limit switches.

Correct Grease Gun Procedures

1. Do not use a pneumatic grease gun. Pump grease slowly, taking $10-15$ seconds to complete each stroke. A grease gun can build up extremely high pressure which will force seals out of position and cause them to leak, even though both the seal and the bearing housing are equipped with spring loaded relief plugs.
2. Apply quantity of grease called for in the checklist. Over-lubrication can be as damaging as under-lubrication. Where quantities are stated in strokes, one stroke of the grease gun is assumed to provide .0624 fluid ounces (1.77 grams) (by volume) of grease. Therefore, one fluid ounce (28.3 grams) of grease would be provided by 16 strokes of the grease gun. Determine the flow rate of your grease gun by pumping one ounce into a calibrated container. If fewer than 16 strokes are required, all quantities in strokes in the chart should be reduced accordingly, and if more than 16 strokes are required, the number of strokes should be increased. Before starting lubrication, make sure your grease gun is working and that you get a full charge of grease with every stroke.
3. Do not pump grease in until it oozes out of the spring loaded relief plugs. Plugs bleed out excess grease and help prevent abnormal pressures from building up in the housing during operation (especially when the machine is first commissioned and after each lubrication). Plugs will not protect against over-lubrication.
4. Do not over-lubricate motors. Over-lubrication of a motor can seriously damage it by forcing grease into motor windings. Over-lubrication of the extract motor can force grease into the centrifugal switch causing it to malfunction.
5. Do not allow grease to drip on the brake disk or clutch tire/drum during lubrication. This will reduce the braking action considerably, and may permit the cylinder to creep while loading and unloading.

FIGURE 2 (MSSM0201CE)
Typical Hydro-Cushion
Maintenance Points
Daily and Weekly Maintenance Items

Frequency	Component	Action
Daily	Hydraulic Tilt System (48", 52", and 72" Tilt machines) - Reservoir FIGURE 1 and NOTE 1	Check fluid with machine not tilted
	Hydro-Cushions ${ }^{\circledR}$ (all machines) FIGURES 2 and 3	Check for leaks
Weekly	Final stage and other v-belts (throughout all machines) FIGURES 1 and 12 NOTES 2 and 3	Check for wear and tension

NOTE 1: Tank should be approximately three-quarters full when the machine is not tilted. Do not over-fill. NOTE 2: V-belt instructions for the first week of operation

- After 24 hours operation (three eight hour days), tighten final stage v-belts.
- After 80 hours operation (ten eight hour days), tighten final stage v-belts again.
After 160 hours of operation (twenty eight hour days), tighten final stage
NOTE 3: All v-belts are not alike. "Super" or "High Capacity" v-belts frequently have considerably higher brand of v-belt, although both v-belts are "interchangable". It is always best to purchase replacement belts from the original manufacturer of the equipment. Purchasing exact replacements of the
original belts is the best way to assure belt life equal to the original set.
Occasionally, Milnor ${ }^{\circledR}$ will change a belt specification to improve belt life
Occasionally, Milnor ${ }^{\circledR}$ will change a belt specification to improve belt life.
Belts purchased from Milnor ${ }^{\circledR}$ are as currently specified.
Maintenance Points

FIGURE 1 (MSSM0201CE)
Hydraulic Fluid Reservoir Fill and Level Check Point
(located at rear of 48", 52", and 72" tilt machines only)

FIGURE 3 (MSSM0201CE)
Typical Upper Hydro-Cushion ${ }^{\circledR}$
Grease Fitting

FIGURE 5 (MSSAMO201CE)
42" Staph-Guard ${ }^{\text {In }}$ Front and
Rear Bearing and Seal Grease

60" and 72" Divided Cylinder Rear Seal and Bearing

NOTE 6: Bearings can run hot enough to make it extremely uncomfortable for a
person to hold his hand on the bearing housing for more than a few seconds. This is normal.

1
Monthly Maintenance Items

Frequency	Component	Action
$\begin{gathered} \text { Monthly } \\ \text { (see NOTE 4) } \end{gathered}$	42" Open pocket main bearings and seals FIGURE 11, NOTES 5 and 6	
	- Front and rear bearing grease fitting	0.12 ounces (3.54 grams), two strokes at two locations
	- Seal grease fitting	0.06 ounces (1.77 grams), one stroke at one location
	48" Open pocket main bearings, seals and Hydro-Cushions ${ }^{\circledR}$ FIGURES 11 and 13, NOTES 4, 5, 6 and 7	
	- Front and rear bearing grease fitting	0.31 ounces (8.85 grams), five strokes at two locations
	- Seal grease fitting	See "Semi- AnnualMaintenance Items" in this section
	- Hydro-Cushion ${ }^{\circledR}$ bypass (48" open-pocket only)	Drain small quantity of oil. If milky, see note 7 below
	52" and 72" Open pocket main bearings and seals FIGURE 11, NOTES 4, 5, and 6	
	- Front bearing grease fitting	0.62 ounces (17.7 grams), ten strokes at one location
	- Rear bearing grease fitting	0.31 ounces (8.8 grams), five strokes at one location
	- Seal grease fitting	0.19 ounces (5.31 grams), three strokes at one location
	Drive train components FIGURE 12	
	- Pulleys and clutches	Check for wear
	- All components	Remove soil build-up

TE 7:"Milky" oil is contaminated by water. Drain cylinder and unscrew cap on
bottom of bypass (See BMP890047). Remove piston rod and inspect the upper bottom of bypass (See BMP890047). Remove piston rod and inspect the upper from the air supply to enter hydrocushion. Repair worn parts and change oil.

FIGURE 10 (MSSMO201CE) $^{(®}$ Rear
60044 and 72044 Staph-Guard $^{(1)}$
Bearing and Seal Grease Fittings (Io-

FIGURE 9 (MSSMO201CE)
60044 and 72044 Staph-Guard ${ }^{\circledR}$
(Front Bearing and Seal Grease Fit-

Typical Drive Train Components (48" machine shown)

FIGURE 16 (MSSSMO2O1CE)

Grease Fittings
(52 machine shown)

	Monthly Maintenance Items		
	Frequency	Component	Action
	Monthly(see NOTE 4)	Handwheel screw (42" Divided Cylinder and StaphGuard ${ }^{(8)}$) - Screw thread FIGURE 14	Three drops of light machine oil
		Door hinges - Grease fittings FIGURE 15	0.12 ounces (3.54 grams), two strokes at each location
		Handwheel stop (42" Divided Cylinder and StaphGuard $^{\circledR}$) - Grease fitting FIGURE 16	0.06 ounces (1.77 grams), one stroke at one location
		Idler shaft (Staph-Guard ${ }^{\circledR}$ only)	
FIGURE 20 (MSSMO201CE) Tilt Wheels		- Grease fittings FIGURES 17 and 18	0.31 ounces (8.85 grams), five strokes at two locations
'and 48" tilt machines only)		Disc brake (60" and 72" Staph-Guard ${ }^{\circledR}$ only) - Grease fittings FIGURE 18	0.12 ounces (3.54 grams), two strokes at one location
		Jackshaft (if equipped) - Grease fittings FIGURE 19 NOTES 5 and 6	0.12 ounces (3.54 grams) two strokes at two locations
		Tilt wheels (42", 48", and 72" Tilt Models) - Grease fittings FIGURE 20	0.12 ounces (3.54 grams), two strokes at each locations

FIGURE 22 (MSSM0201CE)
Brake Band Grease Fittings
(60044 and 72044WP2/WP3)

FIGURE 25 (MSSMO201CE)
Hydraulic Tilt Pressure Gauge
(On rear of 42", 48", and 72" tilt models)

Quarterly Maintenance Items

Frequency	Component	Action
Quarterly	Brake Components	
	- Disk brake reservoir (60" and 72" Staph-Guard ${ }^{\circledR}$ only) FIGURE 21	Check level, refill as required (Always use fresh fluid from a sealed container)
	- Brake band grease fittings (60044 and 72044 WP2/WP3 only) FIGURE 22	0.06 ounces (1.77 grams), one stroke at two locations. Do not allow grease to drip on brake surfaces.
	- Brake shoes FIGURE 23	Check for wear, adjust or replace as required.
	- Disc brake pads (60" and 72" Staph-Guard ${ }^{\circledR}$ only) FIGURE 24	Check for wear, replace as required
	Hydro-Cushions FIGURES 2 and 3	Check oil level, add as necessary Inspect washer, replace as necessary
	Motors FIGURE 12 NOTES 8 and 9	See "BALDOR MOTOR MAINTENANCE...," MSSM0274AE in this manual.
	Hydraulic tilt pressure gauge FIGURE 25	Check pressure while machine is returning from a tilted position
	- 42" Open pocket	800 PSI (55 Bar)
	- 48" Open pocket	900 PSI (62 Bar)
	- 72" Open pocket	1000 PSI (69 Bar)
	Door seal pressure regulator FIGURE 26	Check settings with machine in bare manual and clockwise wash rotation. See instructions for operating individual outputs in the reference manual.
	- 42" and 48" Open pocket	48-50 PSI ($3.37-3.51 \mathrm{Kg} / \mathrm{cm}^{2}$)
	- 60" and 72" Rapid load	25-28 PSI ($1.76-1.97 \mathrm{Kg} / \mathrm{cm}^{2}$)
	- 60" and 72" Staph-Guard ${ }^{\text {® }}$	18-20 PSI (1.27-1.41 Kg/cm ${ }^{2}$)

NOTE 8: If motor manufacturer's instructions conflict with manual section, follow nameplate instructions. motors are warrantied by their manufacturers, not by Milnor ${ }^{\circledR}$.

NOTE 9: Pump grease slowly with relief ports open. Do not over-lubricate.
Semi-Annual Maintenance Items

Frequency	Component	Action
Semi-Annual	Main bearings and seals - 48" Seal grease fittings FIGURE 11	0.12 ounces (3.54 grams), two strokes at one location
	Gear reducer FIGURE 27	Check oil level, refill as required
	Push Back and Forward System FIGURE 28 and NOTE 10	
	- Down position pressure gauge and regulator	Check pressure in a "wash step" 3-5 PSI (.21-0.35 Kg/cm ${ }^{2}$)
	- Tilt position pressure regulator and gauge	Check pressure in a "wash step" $30 \operatorname{PSI}\left(2.11 \mathrm{Kg} / \mathrm{cm}^{2}\right)$
	Push-down control valves (72" Rapid load and StaphGuard ${ }^{\circledR}$) FIGURE 29 and NOTE 11	Observe operation and adjust if required
	Recirculation (48" dye models only) FIGURE 30	Replace hose

[^0]NOTE 10:52" and 72" machines are not equipped with a tilt pressure regulator or gauge. : Adjust push-down control valves so that machine moves down evenly,
and all push-down sockets meet simultaneously. If the back of the machine
comes down first, close the valve slowly. If the front comes down first, open the valve.

FIGURE 30 (MSSMO201CE)
(48" dye machine only - cover removed for clarity)

		$$							
	แ！ฺца әпиกчS							居	
		$\stackrel{\rightharpoonup}{6}$							
	S．IO10w ．ләмоІG						\simeq		\sim
		\％							
$\underline{\square}$							N		N
0 0 0 0	S．1ə［｜0．I 1．10ddnS／ən！．1（	$\begin{aligned} & \text { N } \\ & \text { 工 } \\ & \text { 国 } \end{aligned}$					N		
$\begin{aligned} & 0 \\ & \vec{U} \\ & \text { en } \end{aligned}$	s．ıәI0．I әр！n才	$\begin{aligned} & \text { N } \\ & \text { I } \\ & \text { ind } \end{aligned}$							
	．1P！	$\underset{\tilde{n}}{ }$	\cdots						
	әYe．iq ss！đ	$\stackrel{\text { N}}{\stackrel{\circ}{0}}$							
	sus！ueчэәш э！ппелркН	$\stackrel{\circ}{\circ}$							
	suo！чsnว－0．．ркН		ત̀	d					
		$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { Pi } \end{aligned}$							
	ләэпрәл лвә刀	ત్సి			$\stackrel{0}{0}$			\％	
$\begin{aligned} & \Theta_{0}^{3} \\ & \stackrel{3}{0} \end{aligned}$	Ssu！snoy Su！ureg	$\begin{aligned} & \text { N } \\ & \text { 픞 } \\ & \text { In } \end{aligned}$							
		$\begin{aligned} & \Theta \\ & \underset{0}{3} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { NN } \\ & \underset{\sim}{N} \\ & \underset{\sim}{N} \\ & \underset{\gamma}{2} \end{aligned}$	$\begin{aligned} & \text { TN1 } \\ & \underset{\sim}{o} \\ & \underset{\sim}{N} \\ & \underset{\sim}{\prime} \end{aligned}$		～	$\stackrel{\rightharpoonup}{\circ}$		－

Oils					
DOT 3	$=$ NAPA Super Heavy Duty Brake Fluid DOT 3				
23	$=$ Shell Tellus ${ }^{\circledR} 23$				
30	$=$ High quality SAE 30，40，or 50 weight motor oil				
（non－detergent，if available）		$	$	32	$=$ Shell Tellus ${ }^{\circledR} 32$
:---	:---				
T32	$=$ Shell Turbo ${ }^{\circledR}$ T32				
68	$=$ Shell Tellus ${ }^{\circledR} 68$				
220	$=$ Shell Morlina ${ }^{\circledR} 220$				
630	$={\text { Valvoline Special Moly }{ }^{\circledR} \text { EP } 630}^{634}$				
1030	$=$ Mobile SHC ${ }^{\circledR} 634$ Oil				
1540	$=$ Shell Rotella T ${ }^{\circledR} 10 \mathrm{~W} 30$				

MSSM0132AE／9903AV（1 of 1）

ons for The following are lubricants used in Milnor machines．Always refer to the preventive maintenance instructions for
specific lubricating instructions．Consult lubricant manufacturer to verify equivalence before using a substitute．Mixing different base greases can cause bearing and seal damage．

	Washer－Extractors										
Open Pocket Machines			0 0 0 0 0 0 0	©	${ }_{\substack{0 \\ 0}}^{0}$						N 0 0 0 0 0 0 0 0 0 0 0
30015，20，22，C，S，and M	30										
3022F8J	220		220								
36021Q4x，36026Q4x											
36021BWP						Wells	1540				
$\begin{aligned} & 36021 \mathrm{Q} 6 x, 36026 \mathrm{Qx}, \\ & 42024 \mathrm{Q} 4 \mathrm{x}, 42026 \mathrm{Q} 6 \mathrm{x} \\ & \hline \end{aligned}$	EPLF 2	220			EPLF 2						
36030 Fxx			1030					DOT 3			
42032Fxx											
42026QHP 48032BHP／BTL／BTN 48036QHP／QTL／QTN		220		220					1030	Door	EPLF 2
52038WP1／WTL／WTN				1030							
$\begin{aligned} & \text { 64046ExN } \\ & \text { 72046ExN } \\ & \text { 72058JxN } \end{aligned}$			1030					DOT 3	68		
Divided Cylinder Machines											
$\begin{aligned} & 42031-44 \mathrm{WP} 2 / 3 \\ & 42031-44 \mathrm{SP} 2 / 3 \\ & 60044 \mathrm{SP} 2 / 3 \\ & 72044 \mathrm{SP} 2 / 3 \end{aligned}$	EPLF 2	220		1030	EPLF 2			DOT 3		Door	EPLF 2

Most of the information in this document is taken from the Baldor Electric Company Instruction, Operation, and Maintenance Manual, and provides a means of more accurately determining motor lubrication requirements based on local conditions.

General Maintenance

Inspect, clean, and test motors at regular intervals- approximately every 500 operating hours or every three months, whichever comes first. Lubricate motors at the intervals determined herein. Keep accurate maintenance records.

DANGER: Electrocution and Electrical Burn Hazards
Contact with high voltage will electrocute or burn you. Power switches on the machine and the control box do not eliminate these hazards. High voltage is present at the machine unless the main power is off. Electrical power can cause death or severe injury.
De Do not service machine unless qualified and authorized.
Leck OFF and tag out power at the wall disconnect before servicing, or in accordance with factory service procedures.

DANGER: Entangle and Crush Hazard

Contact with moving components normally isolated by guards, covers, and panels, can entangle and crush your limbs. These components move automatically.
\square Do not service machine unless qualified and authorized.
Leck OFF and tag out power at the wall disconnect before servicing, or in accordance with factory service procedures.

Clean-Keep the exterior of the motor free of dirt, oil, grease, water, etc. Keep ventilation openings clear. Oily vapor, paper pulp, textile lint, etc., can accumulate and block ventilation, causing overheating and early motor failure.

Test-Periodically, check the motor and winding insulation integrity using a "megger." Record the megger readings and immediately investigate any significant drop in insulation resistance. Check all electrical connectors to be sure they are tight.

Lubricate-Determine the proper lubrication interval for your motor as explained in "How to Determine Lubrication Interval" in this section, and lubricate accordingly.

FIGURE 1 (MSSM0274AE)
Typical Motor Data Plate

How to Determine Lubrication Interval-The useful life of antifriction bearing grease can be estimated, based on service conditions, frame type, and motor rpm. An example of determining the correct lubrication interval is provided below.

Ex: A fan motor, operating at an ambient temperature of $109^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)$ in a moderately corrosive atmosphere. The motor has a NEMA 286T/(IEC 180) frame and is rated at 1750 rpm .

1. Table 1 classifies the service condition as "severe."
2. Table 2 specifies a 0.5 service condition multiplier value for "severe" service condition.
3. Table 3 specifies 9500 hours as the recommended lubrication interval for frame sizes 254 to 286 (see nameplate), given standard service conditions.
4. Multiply . 5 (service condition multiplier value) by 9500 hours (recommended lubrication interval) $=4750$ hours (calculated lubrication interval).
5. Table 4 shows that the amount of grease to be added is 0.32 ounces (9.1 grams).

Table 1 - Determining the Service Condition

Severity of Service	Maximum Ambient Temperature	Atmospheric Contamination	Type of Bearing
Standard	$104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$	Clean, little corrosion	Deep groove ball bearing
Severe	$122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$	Moderate dirt, corrosion	Ball thrust, Roller
Extreme	$>122^{\circ} \mathrm{F}\left(>50^{\circ} \mathrm{C}\right)$ or Class H Insulation (Note 1)	Severe dirt, abrasive dust, corrosion	All bearings
Low Temperature	$-22^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right)$ (Note 2)		

Note 1: Special high temperature grease is recommended.
Note 2: Special low temperature grease is recommended.
Table 2 - Service Condition Multiplier Value

Operating Condition	Multiplier
Standard	1.0
Severe	0.5
Extreme	0.1

Table 3 - Recommended Lubrication Intervals at Standard Service Conditions

NEMA (IEC) Frame Size	Rated Speed - RPM			
	3600	1800	1200	900
Up to 215 (132)	5500 Hrs.	12000 Hrs.	18000 Hrs.	22000 Hrs.
254 to 286 (160-180)	3600 Hrs.	9500 Hrs.	15000 Hrs.	18000 Hrs.
324 to 365 (200-225)	2200 Hrs.(Note 3)	7400 Hrs.	12000 Hrs.	15000 Hrs.
404 to 5000 (280-315)	2200 Hrs.(Note 3)	3500 Hrs.	7400 Hrs .	10500 Hrs.

Note 3: Bearings in 404 through 5000 frame, 2 pole motors are either 6313 or 6314 bearings and the lubrication interval is shown in the table. If roller bearings are used, the bearings must be lubricated more frequently. Divide the listed lubrication interval by two.

Table 4 - Lubrication Amounts per Frame

NEMA (IEC) Frame Size	Bearing Description These are the "Large" bearings (Shaft End) in each frame size (Note 4)					
	Largest bearing in size category	$\underset{\text { D mm }}{\text { OD }}$	Width B mm	Grease gun strokes (Note 5)	Volume of grease to be added	
					ounces	grams
Up to 215 (132)	6307	80	21	2.5	0.16	4.7
$\begin{aligned} & 254 \text { to } 286 \\ & (160-180) \end{aligned}$	6311	120	29	5.0	0.32	9.1
$\begin{aligned} & 324 \text { to } 365 \\ & (200-225) \end{aligned}$	6313	140	33	7.0	0.43	12.2
$\begin{gathered} 404 \text { to } 5000 \\ (280-315) \end{gathered}$	NU322	240	50	18.0	1.11	31.5

Note 4: Smaller bearings in size category may require reduced amounts of grease.
Note 5: See "Correct Grease Gun Procedures" for information on estimating the output of handoperated grease guns.

Lubrication Recommendations

Type of Grease—Use Shell Dolium R (factory installed) or Chevron SRI greases for standard service conditions. The extreme and low temperature conditions are not normally encountered in the laundry. However, for extreme conditions, use Darmex 707 and for low temperature conditions, use Arrowshell 7. Contact Baldor for equivalents, if necessary.

Correct Grease Gun Procedures

1. Use hand-operated grease gun, not a pneumatic grease gun. Pump grease slowly, taking 10 to 12 seconds to complete each stroke.
2. Apply quantity of grease called for. Over-lubrication can be as damaging as under-lubrication. Where quantities are stated in strokes, one stroke of the grease gun is assumed to provide .0624 fluid oz. (1.77 grams) (by volume) of grease. Therefore, one fluid ounce (28.3 grams) of grease would be provided by 16 strokes of the grease gun. Determine the flow rate of your grease gun by pumping one ounce into a calibrated container. If fewer than 16 strokes are required, all quantities in strokes in the chart should be reduced accordingly. If more than 16 strokes are required, the number of strokes should be increased. Before starting lubrication, make sure your grease gun is working and that you get a full charge of grease with every stroke.
3. Do not over-lubricate motors. Over-lubrication of a motor can seriously damage it by forcing grease into motor windings. Over-lubrication of the extract motor can force grease into the centrifugal switch causing it to malfunction.
4. Do not allow grease to drip on the brake disk or clutch tire/drum during lubrication. This will reduce the braking action considerably, and may permit the cylinder to creep while loading and unloading.

Lubrication Procedure

\square NOTICE: Motor Damage

To avoid damage to motor bearings, grease must be kept free of dirt. For an extremely dirty environment, contact your Baldor distributor or an authorized Baldor Service Center for additional information.

1. Clean grease fittings.
2. Remove grease outlet plug.
3. Add recommended amount of grease. Be sure grease to be added is compatible with the grease already in motor. Consult your Baldor distributor or an authorized Baldor Service Center if grease other than recommended is to be used. Stop when new grease appears at shaft hole in the endplate or grease outlet plug.
4. Replace grease outlet plug.

FASTENER TORQUE REQUIREMENTS

The specifications in this section apply to $1 / 4$ inch and larger Unified National fine and coarse fasteners used on Milnor ${ }^{\circledR}$ machines. This information is to be used only when torque specifications are not stated in the installation or service instructions.

When tightening applicable fastener, abide by the following precautions:

1. Always use new fasteners. Replace bolts, nuts, flat washers, and lock washers in the order shown on the parts drawing.
2. Unless otherwise specified, use:

- Loctite ${ }^{\circledR} 271$ threadlocker or equivalent for bearing housing mounting bolts from one half to one inch in diameter.
- Loctite ${ }^{\circledR} 277$ threadlocker or equivalent for bearing housing mounting bolts of one inch diameter or larger.
- Loctite ${ }^{\circledR} 242$ threadlocker for all other fasteners requiring thread locking compound.

3. Use a torque wrench to assure proper tightness.
4. Never lubricate fasteners. The values specified herein are maximum recommended torques and are calculated from published ASTM and SAE data. Actual allowable torques are application dependent and can vary for many reasons, (joint types, gaskets, etc.). Use these values as a guide.

FIGURE 1 (MSSM0101CE)
Fastener Grade Markings
5. Although FIGURE 1 depicts hex head bolts, the table applies to all head types.

Fasteners and Threadlocker

How Fasteners Loosen-Standard threaded fasteners are manufactured with a clearance fit for easy assembly. With the fastener at the proper torque, 85% of the tightening torque is absorbed in the threads and under the fastener head. The remaining 15% provides the friction that prevents the thread from slipping. When this friction is overcome (by bending, thermal expansion, internal pressures, functional loads, or impact) the thread slips and loosens. Although higher torques reduce the likelihood of thread slippage, if slippage occurs, the threads unwind and the fastener loosens. Once thread slippage begins, vibration increases the rate of loosening.
Preventing Loosening-The most effective way to prevent loosening of threaded parts is by proper application of a threadlocking compound. Threadlocker provides lubrication during assembly, then hardens to seal the threads against corrosion and provide resistance to thread slippage.

Applying Threadlocker

NOTE: The following threadlocker information and illustrations are excerpts from the Loctite ${ }^{\circledR}$ User's Guide and are used with permission.

For maximum strength, threadlocker must fill the thread voids completely, as shown in FIGURE 2. Organic or petroleum solvent will remove excess uncured adhesive from joints. Consult information below for the specific fastener application.

Bolts and Nuts-See FIGURE 3.

FIGURE 2 (MSSM0101CE) Correct Threadlocker Use

FIGURE 3 (MSSM0101CE)
Applying Threadlocker to Through Hole
2. Spray all threads with Loctite ${ }^{\circledR}$ Primer N. Allow to dry.
3. Squirt several drops down female threads into bottom of hole.
4. Apply several drops to bolt.
5. Tighten to correct torque for the threadlocker.

1. Clean all threads (bolt and nut) with cleaning solvent.
2. Spray all threads with Loctite ${ }^{\circledR}$ Primer N. Allow to dry.
3. Insert bolt into through hole assembly.
4. Apply several drops of threadlocker onto bolt engagement area.
5. Assemble and tighten nut to correct torque for the threadlocker.

Blind Holes-See FIGURE 4.

1. Clean all threads (bolt and nut) with cleaning solvent.

Removing Fasteners

High strength threadlockers like Loctite ${ }^{\circledR} 271$ (or equivalent) may be weakened by heating to at least $500^{\circ} \mathrm{F}\left(260^{\circ} \mathrm{C}\right)$ as follows.

1. Apply localized heat to fastener as shown in FIGURE 5.
2. Disassemble while hot. Once disassembled, the cured adhesive can be removed with Loctite ${ }^{\circledR}$ Gasket Remover \#790 (or equivalent).

FIGURE 5 (MSSM0101CE)
Removing High Strength Threadlocker

Carbon Steel Fasteners

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for:					
			Loctite 222 or 262	$\left\lvert\, \begin{aligned} & \text { Loctite } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 271 \end{aligned}\right.$	$\begin{array}{\|l\|l} \hline \text { Loctite } \\ 272 \end{array}$	$\left\lvert\, \begin{aligned} & \text { Loctite } \end{aligned}\right.$	Bare
1/4-20	SAE Grade 1 ASTM A307	$\begin{gathered} 2.5 \\ (3.39) \end{gathered}$	$\begin{gathered} 3.0 \\ (4.06) \end{gathered}$	$\begin{gathered} 3.3 \\ (4.47) \end{gathered}$	$\begin{gathered} 3.6 \\ (4.88) \end{gathered}$	$\begin{gathered} 4.6 \\ (6.23) \end{gathered}$	$\begin{gathered} 4.3 \\ (5.83) \end{gathered}$	$\begin{gathered} 3.3 \\ (4.47) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 4.1 \\ (5.56) \end{gathered}$	$\begin{gathered} 4.9 \\ (6.64) \end{gathered}$	$\begin{gathered} 5.5 \\ (7.45) \end{gathered}$	$\begin{gathered} 6.0 \\ (8.13) \end{gathered}$	$\begin{gathered} 7.7 \\ (10.44) \end{gathered}$	$\begin{gathered} 7.1 \\ (9.63) \end{gathered}$	$\begin{gathered} 5.5 \\ (7.46) \end{gathered}$
	SAE Grade 4	$\begin{gathered} 4.8 \\ (6.50) \\ \hline \end{gathered}$	$\begin{gathered} 5.8 \\ (7.86) \\ \hline \end{gathered}$	$\begin{gathered} 6.4 \\ (8.67) \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ (9.49) \\ \hline \end{gathered}$	$\begin{gathered} 9.0 \\ (12.20) \\ \hline \end{gathered}$	$\begin{gathered} 8.3 \\ (11.25) \\ \hline \end{gathered}$	$\begin{gathered} 6.4 \\ (8.67) \\ \hline \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 6.3 \\ (8.54) \end{gathered}$	$\begin{gathered} 7.6 \\ (10.3) \end{gathered}$	$\begin{gathered} 8.4 \\ (11.38) \end{gathered}$	$\begin{gathered} 9.3 \\ (12.60) \end{gathered}$	$\begin{gathered} 11.8 \\ (15.99) \end{gathered}$	$\begin{gathered} 11.0 \\ (14.91) \end{gathered}$	$\begin{aligned} & 8.4 \\ & (11.39) \end{aligned}$
	SAE Grade 7	$\begin{gathered} 7.9 \\ (10.7) \\ \hline \end{gathered}$	$\begin{gathered} 9.4 \\ (12.7) \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ (14.23) \\ \hline \end{gathered}$	$\begin{gathered} 11.5 \\ (15.59) \\ \hline \end{gathered}$	$\begin{gathered} 14.7 \\ (19.93) \\ \hline \end{gathered}$	$\begin{gathered} 13.6 \\ (18.44) \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ (14.23) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 8.9 \\ (12.0) \end{gathered}$	$\begin{gathered} 10.7 \\ (14.5) \end{gathered}$	$\begin{gathered} 11.9 \\ (16.13) \end{gathered}$	$\begin{gathered} 13.1 \\ (17.76) \end{gathered}$	$\begin{gathered} 16.6 \\ (22.50) \end{gathered}$	$\begin{gathered} 15.4 \\ (20.88) \end{gathered}$	$\begin{aligned} & 11.9 \\ & (16.13) \end{aligned}$
	ASTM A354 Grade BC	$\begin{gathered} 7.9 \\ (10.7) \end{gathered}$	$\begin{gathered} 9.4 \\ (12.7) \end{gathered}$	$\begin{gathered} 10.5 \\ (14.23) \end{gathered}$	$\begin{gathered} 11.5 \\ (15.59) \end{gathered}$	$\begin{gathered} 14.7 \\ (19.93) \end{gathered}$	$\begin{gathered} 13.6 \\ (18.44) \end{gathered}$	$\begin{gathered} 10.5 \\ (14.23) \end{gathered}$

All values in foot pounds and (Newton meters)								
Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	$\left\lvert\, \begin{aligned} & \text { Loctite } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 271 \end{aligned}\right.$	$\left\lvert\, \begin{array}{\|l\|l\|l\|} \mid L o c t i t e \\ \hline \end{array}\right.$	$\mid{ }_{277}^{\mid L o c t i t e}$	Bare
1/4-28	SAE Grade 1 ASTM A307	$\begin{gathered} 2.8 \\ (3.80) \end{gathered}$	$\begin{gathered} 3.4 \\ (4.61) \end{gathered}$	$\begin{gathered} 3.8 \\ (5.15) \end{gathered}$	$\begin{gathered} 4.1 \\ (5.56) \end{gathered}$	$\begin{gathered} 5.3 \\ (7.18) \end{gathered}$	$\begin{gathered} 4.9 \\ (6.64) \end{gathered}$	$\begin{gathered} 3.8 \\ (5.15) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 4.7 \\ (6.37) \\ \hline \end{gathered}$	$\begin{gathered} 5.6 \\ (7.60) \\ \hline \end{gathered}$	$\begin{gathered} 6.3 \\ (8.54) \end{gathered}$	$\begin{gathered} 6.9 \\ (9.36) \\ \hline \end{gathered}$	$\begin{gathered} 8.8 \\ (11.93) \\ \hline \end{gathered}$	$\begin{gathered} 8.1 \\ (10.98) \\ \hline \end{gathered}$	$\begin{gathered} 6.3 \\ (8.54) \end{gathered}$
	SAE Grade 4	$\begin{gathered} 5.5 \\ (7.46) \\ \hline \end{gathered}$	$\begin{gathered} 6.6 \\ (8.95) \end{gathered}$	$\begin{gathered} 7.3 \\ (9.90) \end{gathered}$	$\begin{gathered} 8.1 \\ (10.98) \end{gathered}$	$\begin{gathered} 10.3 \\ (13.96) \end{gathered}$	$\begin{gathered} 9.5 \\ (12.88) \end{gathered}$	$\begin{gathered} 7.3 \\ (9.90) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 7.3 \\ (9.90) \\ \hline \end{gathered}$	$\begin{gathered} 8.7 \\ (11.80) \\ \hline \end{gathered}$	$\begin{aligned} & 9.7 \\ & (13.15) \end{aligned}$	$\begin{gathered} 10.7 \\ (14.50) \end{gathered}$	$\begin{gathered} 13.6 \\ (18.44) \\ \hline \end{gathered}$	$\begin{gathered} 12.6 \\ (17.08) \end{gathered}$	$\begin{gathered} 9.7 \\ (13.15) \\ \hline \end{gathered}$
	SAE Grade 7	$\begin{gathered} 8.9 \\ (12.07) \\ \hline \end{gathered}$	$\begin{gathered} 10.7 \\ (14.50) \\ \hline \end{gathered}$	$\begin{gathered} 11.9 \\ (16.13) \\ \hline \end{gathered}$	$\begin{gathered} 13.1 \\ (17.76) \\ \hline \end{gathered}$	$\begin{gathered} 16.6 \\ (22.51) \\ \hline \end{gathered}$	$\begin{gathered} 15.4 \\ (20.88) \\ \hline \end{gathered}$	$\begin{gathered} 11.9 \\ (16.13) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade	$\begin{gathered} 10.2 \\ (13.83) \end{gathered}$	$\begin{gathered} 12.2 \\ (16.54) \end{gathered}$	$\begin{gathered} 13.6 \\ (18.44) \end{gathered}$	$\begin{gathered} 15.0 \\ (20.34) \end{gathered}$	$\begin{gathered} 19.0 \\ (25.76) \end{gathered}$	$\begin{gathered} 17.7 \\ (23.99) \end{gathered}$	$\begin{gathered} 13.6 \\ (18.44) \end{gathered}$
	$\underset{\text { BC }}{ }$ ASTM A354 Grade	-	-	-	-	-	-	-

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or262	$\left\lvert\, \begin{array}{\|l\|l} \text { Loctite } \end{array}\right.$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 271 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 272 \end{aligned}\right.$	277 Loctite	Bare
5/16-18	SAE Grade 1 ASTM A307	$\begin{gathered} 5.1 \\ (6.91) \end{gathered}$	$\begin{gathered} 6.2 \\ (8.40) \end{gathered}$	$\begin{gathered} 6.8 \\ (9.22) \end{gathered}$	$\begin{gathered} 7.5 \\ (10.17) \end{gathered}$	$\begin{gathered} 9.6 \\ (13.02) \end{gathered}$	$\begin{aligned} & 8.9 \\ & (12.07) \end{aligned}$	$\begin{gathered} 6.8 \\ (9.22) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 8.5 \\ (11.52) \end{gathered}$	$\begin{gathered} 10.2 \\ (13.83) \end{gathered}$	$\begin{gathered} 11.3 \\ (15.32) \end{gathered}$	$\begin{gathered} 12.5 \\ (16.95) \end{gathered}$	$\begin{gathered} 15.9 \\ (21.56) \end{gathered}$	$\begin{gathered} 14.7 \\ (19.93) \end{gathered}$	$\begin{gathered} 11.3 \\ (15.32) \end{gathered}$
	SAE Grade 4	$\stackrel{10.0}{(13.56)}$	$\begin{gathered} 12.0 \\ (16.27) \end{gathered}$	$\begin{gathered} 13.3 \\ (18.03) \end{gathered}$	$\begin{gathered} 14.6 \\ (19.79) \end{gathered}$	$\begin{gathered} 18.6 \\ (25.22) \end{gathered}$	$\begin{gathered} 17.3 \\ (23.46) \end{gathered}$	$\begin{gathered} 13.3 \\ (18.03) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 13.0 \\ (17.63) \end{gathered}$	$\begin{gathered} 15.6 \\ (21.15) \end{gathered}$	$\begin{gathered} 17.4 \\ (23.60) \end{gathered}$	$\begin{gathered} 19.1 \\ (25.90) \end{gathered}$	$\begin{gathered} 24.3 \\ (32.95) \end{gathered}$	$\begin{gathered} 22.6 \\ (30.64) \end{gathered}$	$\begin{gathered} 17.4 \\ (23.60) \end{gathered}$
	SAE Grade 7	$\begin{gathered} 16.1 \\ (21.83) \\ \hline \end{gathered}$	$\begin{gathered} 19.3 \\ (26.17) \\ \hline \end{gathered}$	$\begin{gathered} 21.5 \\ (29.15) \\ \hline \end{gathered}$	$\begin{gathered} 23.6 \\ (31.99) \\ \hline \end{gathered}$	$\begin{gathered} 30.1 \\ (40.81) \\ \hline \end{gathered}$	$\begin{gathered} 27.9 \\ (37.83) \\ \hline \end{gathered}$	$\begin{gathered} 21.5 \\ (29.15) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 18.5 \\ (25.08) \end{gathered}$	$\begin{gathered} 22.1 \\ (29.96) \end{gathered}$	$\begin{gathered} 24.6 \\ (33.35) \end{gathered}$	$\begin{gathered} 27.1 \\ (36.74) \end{gathered}$	$\begin{gathered} 34.5 \\ (46.78) \end{gathered}$	$\begin{gathered} 32.0 \\ (43.39) \end{gathered}$	$\begin{gathered} 24.6 \\ (33.35) \end{gathered}$
	ASTM A354 Grade BC	$\begin{gathered} 16.1 \\ (21.83) \end{gathered}$	$\begin{gathered} 19.3 \\ (26.17) \end{gathered}$	$\begin{gathered} 21.5 \\ (29.15) \end{gathered}$	$\begin{gathered} 23.6 \\ (31.99) \end{gathered}$	$\begin{gathered} 30.1 \\ (40.81) \end{gathered}$	$\begin{gathered} 27.9 \\ (37.83) \end{gathered}$	$\begin{gathered} 21.5 \\ (29.15) \end{gathered}$

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc orCadmium Plated	If instructions call for :					
			Loctite 222 or 262	Loctite	$\begin{array}{\|l\|l} \text { Loctite } \\ 271 \end{array}$	Loctite	$\begin{array}{\|l} \text { Loctite } \\ 277 \end{array}$	Bare
5/16-24	$\begin{aligned} & \text { SAE Grade } 1 \\ & \text { ASTM A307 } \\ & \hline \end{aligned}$	$\begin{gathered} 5.6 \\ (7.59) \\ \hline \end{gathered}$	$\begin{gathered} 6.7 \\ (9.08) \\ \hline \end{gathered}$	$\begin{gathered} 7.4 \\ (10.03) \\ \hline \end{gathered}$	$\begin{gathered} 8.2 \\ (11.12) \\ \hline \end{gathered}$	$\begin{gathered} 10.4 \\ (14.10) \\ \hline \end{gathered}$	$\begin{gathered} 9.6 \\ (13.01) \\ \hline \end{gathered}$	$\begin{gathered} 7.4 \\ (10.03) \\ \hline \end{gathered}$
	SAE Grade 2	$\begin{gathered} 9.4 \\ (12.74) \end{gathered}$	$\begin{gathered} 11.3 \\ (15.32) \\ \hline \end{gathered}$	$\begin{gathered} 12.5 \\ (16.94) \end{gathered}$	$\begin{gathered} 13.8 \\ (18.71) \end{gathered}$	$\begin{gathered} 17.5 \\ (23.73) \\ \hline \end{gathered}$	$\begin{gathered} 16.3 \\ (22.09) \\ \hline \end{gathered}$	$\begin{gathered} 12.5 \\ (16.94) \\ \hline \end{gathered}$
	SAE Grade 4	$\begin{gathered} 11.0 \\ (14.91) \\ \hline \end{gathered}$	$\begin{gathered} 13.2 \\ (17.90) \\ \hline \end{gathered}$	$\begin{gathered} 14.6 \\ (19.79) \\ \hline \end{gathered}$	$\begin{gathered} 16.1 \\ (21.83) \\ \hline \end{gathered}$	$\begin{gathered} 20.5 \\ (27.79) \\ \hline \end{gathered}$	$\begin{aligned} & 19.0 \\ & (25.76) \\ & \hline \end{aligned}$	$\begin{gathered} 14.6 \\ (19.79) \\ \hline \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 14.4 \\ (19.52) \\ \hline \end{gathered}$	$\begin{array}{r} 17.2 \\ (23.32) \\ \hline \end{array}$	$\begin{gathered} 19.1 \\ (25.90) \\ \hline \end{gathered}$	$\begin{gathered} 21.1 \\ (28.60) \\ \hline \end{gathered}$	$\begin{gathered} 26.8 \\ (36.35) \\ \hline \end{gathered}$	$\begin{gathered} 24.9 \\ (33.76) \\ \hline \end{gathered}$	$\begin{gathered} 19.1 \\ (25.90) \\ \hline \end{gathered}$
	SAE Grade 7	$\begin{gathered} 17.9 \\ (24.27) \\ \hline \end{gathered}$	$\begin{gathered} 21.4 \\ (29.01) \\ \hline \end{gathered}$	$\begin{gathered} 23.8 \\ (32.27) \\ \hline \end{gathered}$	$\begin{gathered} 26.2 \\ (35.52) \\ \hline \end{gathered}$	$\begin{gathered} 33.4 \\ (45.28) \\ \hline \end{gathered}$	$\begin{gathered} 31.0 \\ (42.03) \\ \hline \end{gathered}$	$\begin{gathered} 23.8 \\ (32.27) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 20.4 \\ (27.66) \end{gathered}$	$\begin{gathered} 24.4 \\ (33.08) \end{gathered}$	$\begin{gathered} 27.1 \\ (36.74) \end{gathered}$	$\begin{gathered} 29.9 \\ (40.54) \end{gathered}$	$\begin{gathered} 38.0 \\ (51.52) \end{gathered}$	$\begin{gathered} 35.3 \\ (47.86) \end{gathered}$	$\begin{gathered} 27.1 \\ (36.74) \end{gathered}$
	ASTM A354 Grade BC	-	-	-	-	-	-	-

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	$\begin{array}{\|l} \text { Loctite } \\ 242 \end{array}$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 271 \end{aligned}\right.$	$\begin{array}{\|l} \text { Loctite } \\ 272 \end{array}$	$\frac{\text { Loctite }}{277}$	Bare
3/8-16	SAE Grade 1 ASTM A307	$\begin{gathered} 9.0 \\ (12.20) \end{gathered}$	$\begin{gathered} 10.8 \\ (14.64) \end{gathered}$	$\begin{gathered} 12.0 \\ (16.27) \end{gathered}$	$\begin{gathered} 13.1 \\ (17.76) \end{gathered}$	$\begin{gathered} 16.7 \\ (22.64) \end{gathered}$	$\begin{gathered} 15.5 \\ (21.01) \end{gathered}$	$\begin{gathered} 12.0 \\ (16.27) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 14.9 \\ (20.20) \\ \hline \end{gathered}$	$\begin{gathered} 17.9 \\ (24.27) \\ \hline \end{gathered}$	$\begin{gathered} 19.9 \\ (26.98) \\ \hline \end{gathered}$	$\begin{gathered} 21.9 \\ (29.69) \\ \hline \end{gathered}$	$\begin{gathered} 27.9 \\ (37.83) \\ \hline \end{gathered}$	$\begin{gathered} 25.9 \\ (35.11) \\ \hline \end{gathered}$	$\begin{gathered} 19.9 \\ (26.98) \\ \hline \end{gathered}$
	SAE Grade 4	$\begin{gathered} 17.8 \\ (24.13) \end{gathered}$	$\begin{gathered} 21.3 \\ (28.88) \end{gathered}$	$\begin{gathered} 23.7 \\ (32.13) \end{gathered}$	$\begin{gathered} 26.0 \\ (35.25) \end{gathered}$	$\begin{gathered} 33.1 \\ (44.87) \end{gathered}$	$\begin{gathered} 30.8 \\ (41.76) \end{gathered}$	$\begin{gathered} 23.7 \\ (32.13) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 23.2 \\ (31.45) \\ \hline \end{gathered}$	$\begin{gathered} 27.8 \\ (37.69) \\ \hline \end{gathered}$	$\begin{gathered} 30.9 \\ (41.89) \end{gathered}$	$\begin{gathered} 34.0 \\ (46.09) \end{gathered}$	$\begin{gathered} 43.3 \\ (58.70) \end{gathered}$	$\begin{gathered} 40.2 \\ (54.50) \end{gathered}$	$\begin{gathered} 30.9 \\ (41.89) \end{gathered}$
	SAE Grade 7	$\begin{gathered} 28.7 \\ (38.91) \\ \hline \end{gathered}$	$\begin{gathered} 34.4 \\ (46.64) \\ \hline \end{gathered}$	$\begin{gathered} 38.2 \\ (51.79) \\ \hline \end{gathered}$	$\begin{gathered} 42.0 \\ (56.94) \\ \hline \end{gathered}$	$\begin{gathered} 53.5 \\ (72.54) \\ \hline \end{gathered}$	$\begin{gathered} 49.7 \\ (67.39) \\ \hline \end{gathered}$	$\begin{gathered} 38.2 \\ (51.79) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 32.7 \\ (44.33) \end{gathered}$	$\begin{gathered} 39.2 \\ (53.15) \end{gathered}$	$\begin{gathered} 43.6 \\ (59.11) \end{gathered}$	$\begin{aligned} & 48.0 \\ & (65.08) \end{aligned}$	$\begin{gathered} 61.0 \\ (82.70) \end{gathered}$	$\begin{gathered} 56.7 \\ (76.87) \end{gathered}$	$\begin{gathered} 43.6 \\ (59.11) \end{gathered}$
	ASTM A354 Grade BC	$\begin{gathered} 28.7 \\ (38.91) \\ \hline \end{gathered}$	$\begin{gathered} 34.4 \\ (46.64) \\ \hline \end{gathered}$	$\begin{gathered} 38.2 \\ (51.79) \\ \hline \end{gathered}$	$\begin{gathered} 42.0 \\ (56.94) \\ \hline \end{gathered}$	$\begin{gathered} 53.5 \\ (72.54) \\ \hline \end{gathered}$	$\begin{gathered} 49.7 \\ (67.39) \\ \hline \end{gathered}$	$\begin{gathered} 38.2 \\ (51.79) \\ \hline \end{gathered}$

All values in foot pounds and (Newton meters)								
Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	$\left\lvert\, \begin{array}{\|l\|l\|l\|} \mid \text { Loctite } \\ \hline \end{array}\right.$	$\left\lvert\, \begin{array}{\|l\|} \text { Loctite } \\ 271 \end{array}\right.$	$\mid{ }_{272}^{\text {Loctite }}$	$\left\lvert\, \begin{array}{\|l} \text { Loctite } \\ 277 \end{array}\right.$	Bare
3/8-24	SAE Grade 1 ASTM A307	$\begin{gathered} 10.2 \\ (13.83) \end{gathered}$	$\begin{gathered} 12.2 \\ (16.54) \\ \hline \end{gathered}$	$\begin{gathered} 13.6 \\ (18.44) \\ \hline \end{gathered}$	$\begin{gathered} 15.0 \\ (20.33) \end{gathered}$	$\begin{gathered} 19.0 \\ (25.76) \end{gathered}$	$\begin{gathered} 17.7 \\ (24.00) \end{gathered}$	$\begin{gathered} 13.6 \\ (18.44) \\ \hline \end{gathered}$
	SAE Grade 2	$\begin{gathered} 16.9 \\ (22.91) \end{gathered}$	$\begin{gathered} 20.3 \\ (27.52) \end{gathered}$	$\begin{gathered} 22.5 \\ (30.52) \end{gathered}$	$\begin{gathered} 24.8 \\ (33.62) \end{gathered}$	$\begin{gathered} 31.5 \\ (42.70) \end{gathered}$	$\begin{gathered} 29.3 \\ (39.73) \end{gathered}$	$\begin{gathered} 22.5 \\ (30.50) \end{gathered}$
	SAE Grade 4	$\begin{gathered} 20.0 \\ (27.11) \end{gathered}$	$\begin{gathered} 24.0 \\ (32.54) \end{gathered}$	$\begin{gathered} 26.7 \\ (36.20) \end{gathered}$	$\begin{gathered} 29.4 \\ (39.86) \\ \hline \end{gathered}$	$\begin{gathered} 37.4 \\ (50.70) \end{gathered}$	$\begin{gathered} 34.7 \\ (47.04) \end{gathered}$	$\begin{gathered} 26.7 \\ (36.20) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 26.2 \\ (35.52) \end{gathered}$	$\begin{gathered} 31.4 \\ (42.57) \end{gathered}$	$\begin{gathered} 34.9 \\ (47.32) \end{gathered}$	$\begin{gathered} 38.4 \\ (52.06) \end{gathered}$	$\begin{gathered} 48.9 \\ (66.30) \end{gathered}$	$\begin{gathered} 45.4 \\ (61.55) \end{gathered}$	$\begin{gathered} 34.9 \\ (47.32) \end{gathered}$
	SAE Grade 7	$\begin{gathered} 32.3 \\ (43.79) \\ \hline \end{gathered}$	$\begin{gathered} 38.8 \\ (52.60) \\ \hline \end{gathered}$	$\begin{gathered} 43.1 \\ (58.44) \\ \hline \end{gathered}$	$\begin{gathered} 47.4 \\ (64.26) \\ \hline \end{gathered}$	$\begin{gathered} 60.4 \\ (81.89) \\ \hline \end{gathered}$	$\begin{gathered} 56.1 \\ (76.06) \\ \hline \end{gathered}$	$\begin{gathered} 43.1 \\ (58.43) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 36.9 \\ (50.02) \end{gathered}$	$\begin{gathered} 44.3 \\ (60.06) \end{gathered}$	$\begin{gathered} 49.2 \\ (66.70) \end{gathered}$	$\begin{gathered} 54.1 \\ (73.35) \end{gathered}$	$\begin{gathered} 68.9 \\ (93.41) \end{gathered}$	$\begin{gathered} 64.0 \\ (86.77) \end{gathered}$	$\begin{gathered} 49.2 \\ (66.70) \end{gathered}$
	ASTM A354 Grade BC	-	-	-	-	-	-	-

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or CadmiumPlated	If instructions call for :					
			Loctite 222 or 262	$\left\lvert\, \begin{array}{\|l\|l\|l\|} \mid L o c t i t e \\ \hline \end{array}\right.$	$\left\lvert\, \begin{array}{\|l\|} \mid L o c t i t e \\ 271 \end{array}\right.$	$\left\lvert\, \begin{array}{\|l\|l} \text { Loctite } \end{array}\right.$	Loctite 277	Bare
7/16-14	SAE Grade 1 ASTM A307	$\begin{gathered} 14.0 \\ (18.98) \end{gathered}$	$\begin{gathered} 17.0 \\ (23.04) \end{gathered}$	$\begin{gathered} 19.14 \\ (25.95) \end{gathered}$	$\begin{gathered} 21.0 \\ (28.47) \end{gathered}$	$\begin{gathered} 27.0 \\ (36.60) \end{gathered}$	$\begin{gathered} 25.0 \\ (33.89) \end{gathered}$	$\begin{gathered} 19.0 \\ (25.76) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 24.0 \\ (32.54) \end{gathered}$	$\begin{gathered} 28.8 \\ (39.05) \end{gathered}$	$\begin{gathered} 32.0 \\ (43.39) \end{gathered}$	$\begin{gathered} 35.2 \\ (47.72) \end{gathered}$	$\begin{gathered} 44.8 \\ (60.74) \end{gathered}$	$\begin{gathered} 41.6 \\ (56.40) \end{gathered}$	$\begin{gathered} 32.0 \\ (43.39) \end{gathered}$
	SAE Grade 4	$\begin{gathered} 28.3 \\ (38.37) \end{gathered}$	$\begin{gathered} 34.0 \\ (46.10) \end{gathered}$	$\begin{gathered} 37.7 \\ (51.11) \end{gathered}$	$\begin{gathered} 41.5 \\ (56.27) \end{gathered}$	$\begin{gathered} 52.8 \\ (71.59) \end{gathered}$	$\begin{gathered} 49.1 \\ (66.57) \end{gathered}$	$\begin{gathered} 37.7 \\ (51.11) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 37.1 \\ (50.30) \end{gathered}$	$\begin{gathered} 44.5 \\ (60.33) \end{gathered}$	$\begin{gathered} 49.5 \\ (67.11) \end{gathered}$	$\begin{gathered} 54.4 \\ (73.76) \end{gathered}$	$\begin{gathered} 69.3 \\ (93.96) \end{gathered}$	$\begin{gathered} 64.3 \\ (87.18) \end{gathered}$	$\begin{gathered} 49.5 \\ (67.11) \end{gathered}$
	SAE Grade 7	$\begin{gathered} 45.9 \\ (62.23) \end{gathered}$	$\begin{gathered} 55.1 \\ (74.70) \end{gathered}$	$\begin{gathered} 61.3 \\ (83.11) \end{gathered}$	$\begin{gathered} 67.4 \\ (91.38) \end{gathered}$	$\begin{gathered} 85.8 \\ (116.33) \end{gathered}$	$\begin{gathered} 79.6 \\ (107.92) \end{gathered}$	$\begin{gathered} 61.3 \\ (83.11) \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 52.5 \\ (71.18) \end{gathered}$	$\begin{gathered} 63.0 \\ (85.41) \end{gathered}$	$\begin{gathered} 70.0 \\ (94.90) \end{gathered}$	$\begin{gathered} 77.0 \\ (104.40) \end{gathered}$	$\begin{gathered} 98.0 \\ (132.87) \end{gathered}$	$\begin{gathered} 91.0 \\ (123.38) \end{gathered}$	$\begin{gathered} 70.0 \\ (94.90) \end{gathered}$
	ASTM A354 Grade BC	$\begin{gathered} 45.7 \\ (61.96) \end{gathered}$	$\begin{gathered} 54.9 \\ (74.43) \end{gathered}$	$\begin{gathered} 61.0 \\ (82.70) \end{gathered}$	$\begin{gathered} 67.1 \\ (90.97) \end{gathered}$	$\begin{gathered} 85.4 \\ (115.79) \end{gathered}$	$\begin{gathered} 79.3 \\ (107.52) \end{gathered}$	$\begin{gathered} 61.0 \\ (82.70) \end{gathered}$

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	$\left\lvert\, \begin{array}{\|l\|l\|} \hline \text { Loctite } \\ 242 \end{array}\right.$	$\begin{array}{\|l\|} \hline \text { Loctite } \\ 271 \end{array}$	$\begin{array}{\|l} \text { Loctite } \\ 272 \end{array}$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 277 \end{aligned}\right.$	Bare
7/16-20	SAE Grade 1 ASTM A307	$\begin{gathered} 16.0 \\ (21.70) \\ \hline \end{gathered}$	$\begin{gathered} 19.2 \\ (26.03) \\ \hline \end{gathered}$	$\begin{gathered} 21.3 \\ (28.88) \\ \hline \end{gathered}$	$\begin{gathered} 23.5 \\ (31.86) \\ \hline \end{gathered}$	$\begin{gathered} 29.9 \\ (40.54) \\ \hline \end{gathered}$	$\begin{gathered} 27.7 \\ (37.56) \\ \hline \end{gathered}$	$\begin{gathered} 21.3 \\ (28.88) \\ \hline \end{gathered}$
	SAE Grade 2	$\begin{gathered} 26.9 \\ (36.48) \\ \hline \end{gathered}$	$\begin{gathered} 32.2 \\ (43.66) \\ \hline \end{gathered}$	$\begin{gathered} 35.8 \\ (48.54) \\ \hline \end{gathered}$	$\begin{gathered} 39.4 \\ (53.42) \\ \hline \end{gathered}$	$\begin{gathered} 50.1 \\ (67.93) \\ \hline \end{gathered}$	$\begin{gathered} 46.6 \\ (63.18) \\ \hline \end{gathered}$	$\begin{gathered} 35.8 \\ (48.54) \\ \hline \end{gathered}$
	SAE Grade 4	$\begin{gathered} 31.6 \\ (42.84) \end{gathered}$	$\begin{gathered} 37.9 \\ (51.39) \end{gathered}$	$\begin{gathered} 42.1 \\ (57.08) \end{gathered}$	$\begin{gathered} 46.3 \\ (62.77) \end{gathered}$	$\begin{gathered} 59.0 \\ (79.99) \end{gathered}$	$\begin{gathered} 54.7 \\ (74.16) \end{gathered}$	$\begin{gathered} 42.1 \\ (57.08) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 41.4 \\ (56.13) \end{gathered}$	$\begin{gathered} 49.7 \\ (67.38) \\ \hline \end{gathered}$	$\begin{gathered} 55.2 \\ (74.84) \end{gathered}$	$\begin{gathered} 60.8 \\ (82.43) \end{gathered}$	$\begin{gathered} 77.3 \\ (104.80) \end{gathered}$	$\begin{gathered} 71.8 \\ (97.35) \\ \hline \end{gathered}$	$\begin{gathered} 55.2 \\ (74.84) \\ \hline \end{gathered}$
	SAE Grade 7	$\begin{gathered} 51.3 \\ (69.55) \\ \hline \end{gathered}$	$\begin{gathered} 61.5 \\ (83.38) \\ \hline \end{gathered}$	$\begin{gathered} 68.4 \\ (92.74) \\ \hline \end{gathered}$	$\begin{gathered} 75.2 \\ (101.96) \\ \hline \end{gathered}$	$\begin{gathered} 95.7 \\ (129.75) \\ \hline \end{gathered}$	$\begin{gathered} 88.9 \\ (120.53) \\ \hline \end{gathered}$	$\begin{gathered} 68.4 \\ (92.74) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 58.2 \\ (78.90) \end{gathered}$	$\begin{aligned} & 69.9 \\ & (94.77) \end{aligned}$	$\begin{gathered} 77.7 \\ (105.35) \end{gathered}$	$\stackrel{85.4}{(115.78)}$	$\begin{gathered} 108.7 \\ (147.37) \end{gathered}$	$\begin{gathered} 101.0 \\ (136.94) \end{gathered}$	$\begin{gathered} 77.7 \\ (105.35) \end{gathered}$
	$\begin{aligned} & \text { ASTM A354 } \\ & \text { Grade BC } \end{aligned}$	-	-	-	-	-	-	-

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or262	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 242 \end{aligned}\right.$	$\begin{array}{\|l} \text { Loctite } \\ 271 \end{array}$	Loctite	Loctite	Bare
1/2-13	SAE Grade 1 ASTM A307	$\begin{gathered} 22.0 \\ (29.83) \end{gathered}$	$\begin{gathered} 26.0 \\ (35.25) \end{gathered}$	$\begin{gathered} 29.38 \\ (39.83) \end{gathered}$	$\begin{gathered} 32.0 \\ (43.39) \end{gathered}$	$\begin{aligned} & 41.0 \\ & (55.59) \end{aligned}$	$\begin{gathered} 38.0 \\ (51.52) \end{gathered}$	$\begin{gathered} 29.0 \\ (39.32) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 36.6 \\ (49.62) \end{gathered}$	$\begin{gathered} 43.9 \\ (59.52) \end{gathered}$	$\begin{gathered} 48.8 \\ (66.16) \end{gathered}$	$\begin{gathered} 53.6 \\ (72.67) \end{gathered}$	$\begin{gathered} 68.3 \\ (92.60) \end{gathered}$	$\begin{gathered} 63.4 \\ (85.96) \end{gathered}$	$\begin{gathered} 48.8 \\ (66.16) \end{gathered}$
	SAE Grade 4	$\begin{gathered} 43.1 \\ (58.44) \\ \hline \end{gathered}$	$\begin{gathered} 51.8 \\ (70.23) \\ \hline \end{gathered}$	$\begin{gathered} 57.5 \\ (77.96) \\ \hline \end{gathered}$	$\begin{gathered} 63.3 \\ (85.82) \\ \hline \end{gathered}$	$\begin{gathered} 80.5 \\ (109.14) \\ \hline \end{gathered}$	$\begin{gathered} 74.8 \\ (101.42) \\ \hline \end{gathered}$	$\begin{gathered} 57.5 \\ (77.96) \\ \hline \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 56.7 \\ (76.87) \\ \hline \end{gathered}$	$\begin{gathered} 68.1 \\ (92.33) \\ \hline \end{gathered}$	$\begin{gathered} 75.6 \\ (102.5) \\ \hline \end{gathered}$	$\begin{gathered} 83.2 \\ (112.80) \\ \hline \end{gathered}$	$\begin{gathered} 105.9 \\ (143.58) \\ \hline \end{gathered}$	$\begin{gathered} 98.3 \\ (133.27) \\ \hline \end{gathered}$	$\begin{gathered} 75.6 \\ (102.50) \\ \hline \end{gathered}$
	SAE Grade 7	$\begin{gathered} 69.8 \\ (94.64) \\ \hline \end{gathered}$	$\begin{gathered} 83.8 \\ (113.62) \\ \hline \end{gathered}$	$\begin{gathered} 93.1 \\ (126.23) \\ \hline \end{gathered}$	$\begin{gathered} 102.4 \\ (138.84) \\ \hline \end{gathered}$	$\begin{gathered} 130.4 \\ (176.80) \\ \hline \end{gathered}$	$\begin{gathered} 121.1 \\ (164.19) \\ \hline \end{gathered}$	$\begin{gathered} 93.1 \\ (126.23) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 79.7 \\ (108.05) \end{gathered}$	$\begin{gathered} 95.6 \\ (129.62) \end{gathered}$	$\begin{gathered} 106.3 \\ (144.12) \end{gathered}$	$\begin{gathered} 116.9 \\ (158.50) \end{gathered}$	$\begin{gathered} 148.8 \\ (201.75) \end{gathered}$	$\begin{gathered} 138.1 \\ (187.24) \end{gathered}$	$\begin{gathered} 106.3 \\ (144.12) \end{gathered}$
	$\begin{aligned} & \text { ASTM A354 } \\ & \text { Grade BC } \end{aligned}$	$\begin{gathered} 69.8 \\ (94.64) \\ \hline \end{gathered}$	$\begin{gathered} 83.8 \\ (113.62) \\ \hline \end{gathered}$	$\begin{gathered} 93.1 \\ (126.23) \\ \hline \end{gathered}$	$\begin{gathered} 102.4 \\ (138.84) \\ \hline \end{gathered}$	$\begin{gathered} 130.4 \\ (176.80) \\ \hline \end{gathered}$	$\begin{gathered} 121.1 \\ (164.19) \\ \hline \end{gathered}$	$\begin{array}{r} 93.1 \\ (126.23) \\ \hline \end{array}$

All values in foot pounds and (Newton meters)								
Nominal bolt size	Standard and Grade Designation	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & \hline 242 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 271 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 272 \end{aligned}\right.$	Loctite 277	Bare
1/2-20	SAE Grade 1 ASTM A307	$\begin{gathered} 24.8 \\ (33.62) \end{gathered}$	$\begin{gathered} 29.8 \\ (40.40) \end{gathered}$	$\begin{gathered} 33.1 \\ (44.88) \end{gathered}$	$\begin{gathered} 36.4 \\ (49.35) \end{gathered}$	$\begin{gathered} 46.4 \\ (62.91) \end{gathered}$	$\begin{gathered} 43.1 \\ (58.44) \end{gathered}$	$\begin{gathered} 33.1 \\ (44.88) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 41.3 \\ (56.00) \\ \hline \end{gathered}$	$\begin{gathered} 49.5 \\ (67.11) \\ \hline \end{gathered}$	$\begin{gathered} 55.0 \\ (74.57) \\ \hline \end{gathered}$	$\begin{gathered} 60.5 \\ (82.02) \\ \hline \end{gathered}$	$\begin{gathered} 77.0 \\ (104.40) \\ \hline \end{gathered}$	$\begin{gathered} 71.5 \\ (96.94) \\ \hline \end{gathered}$	$\begin{gathered} 55.0 \\ (74.57) \\ \hline \end{gathered}$
	SAE Grade 4	$\begin{gathered} 48.8 \\ (66.16) \end{gathered}$	$\begin{gathered} 58.5 \\ (79.32) \end{gathered}$	$\begin{gathered} 65.0 \\ (88.13) \end{gathered}$	$\begin{gathered} 71.5 \\ (96.94) \\ \hline \end{gathered}$	$\begin{gathered} 91.0 \\ (123.38) \end{gathered}$	$\begin{gathered} 84.5 \\ (114.57) \end{gathered}$	$\begin{gathered} 65.0 \\ (88.13) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 63.8 \\ (86.50) \\ \hline \end{gathered}$	$\begin{gathered} 76.5 \\ (103.72) \\ \hline \end{gathered}$	$\begin{gathered} 85.0 \\ (115.24) \end{gathered}$	$\begin{gathered} 93.5 \\ (126.77) \\ \hline \end{gathered}$	$\begin{gathered} 119.0 \\ (161.34) \end{gathered}$	$\begin{gathered} 110.5 \\ (149.82) \end{gathered}$	$\begin{gathered} 85.0 \\ (115.24) \\ \hline \end{gathered}$
	SAE Grade 7	$\begin{gathered} 78.8 \\ (106.84) \\ \hline \end{gathered}$	$\begin{gathered} 94.5 \\ (128.12) \\ \hline \end{gathered}$	$\begin{gathered} 105.0 \\ (142.36) \\ \hline \end{gathered}$	$\begin{gathered} 115.5 \\ (156.60) \\ \hline \end{gathered}$	$\begin{array}{c\|} 147.0 \\ (199.30) \\ \hline \end{array}$	$\begin{gathered} 136.5 \\ (185.07) \\ \hline \end{gathered}$	$\begin{gathered} 105.0 \\ (142.36) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 90.0 \\ (122.02) \end{gathered}$	$\begin{gathered} 108.0 \\ (146.43) \end{gathered}$	$\begin{gathered} 120.0 \\ (162.70) \end{gathered}$	$\begin{gathered} 132.0 \\ (179.00) \end{gathered}$	$\begin{gathered} 168.0 \\ (277.78) \end{gathered}$	$\begin{gathered} 156.0 \\ (211.51) \end{gathered}$	$\begin{gathered} 120.0 \\ (162.70) \end{gathered}$
	ASTM A354 Grade BC	-	-	-	-	-	-	-

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	$\mid{ }_{242}^{\text {Loctite }}$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 271 \end{aligned}\right.$	$\mid{ }_{272}^{\mid L o c t i t e}$	$\left\lvert\, \begin{array}{\|l\|l} \text { Loctite } \end{array}\right.$	Bare
9/16-12	SAE Grade 1 ASTM A307	$\begin{gathered} 32.0 \\ (43.39) \end{gathered}$	$\begin{gathered} 38.0 \\ (51.52) \end{gathered}$	$\begin{gathered} 42.19 \\ (57.20) \end{gathered}$	$\begin{gathered} 46.0 \\ (62.37) \end{gathered}$	$\begin{gathered} 59.0 \\ (80.00) \end{gathered}$	$\begin{gathered} 55.0 \\ (74.57) \end{gathered}$	$\begin{gathered} 42 \\ (56.94) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 52.7 \\ (71.45) \end{gathered}$	$\begin{gathered} 63.3 \\ (85.82) \end{gathered}$	$\begin{gathered} 70.3 \\ (95.31) \end{gathered}$	$\begin{gathered} 77.3 \\ (104.80) \end{gathered}$	$\begin{gathered} 98.4 \\ (133.41) \end{gathered}$	$\begin{gathered} 91.4 \\ (123.92) \end{gathered}$	$\begin{gathered} 70.3 \\ (95.31) \end{gathered}$
	SAE Grade 4	$\begin{gathered} 62.2 \\ (84.33) \\ \hline \end{gathered}$	$\begin{array}{c\|} 74.7 \\ (101.28) \\ \hline \end{array}$	$\begin{gathered} 83.0 \\ (112.53) \\ \hline \end{gathered}$	$\begin{gathered} 91.3 \\ (123.79) \\ \hline \end{gathered}$	$\begin{gathered} 116.2 \\ (157.55) \\ \hline \end{gathered}$	$\begin{gathered} 107.9 \\ (146.30) \\ \hline \end{gathered}$	$\begin{gathered} 83.0 \\ (112.53) \\ \hline \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 81.7 \\ (110.77) \end{gathered}$	$\stackrel{98.1}{(133.00)}$	(147.78)	$\begin{aligned} & 119.9 \\ & (162.56) \end{aligned}$	$\begin{aligned} & 152.6 \\ & (206.90) \end{aligned}$	$\begin{gathered} 141.7 \\ (192.17) \end{gathered}$	(147.78)
	SAE Grade 7	$\begin{gathered} 100.7 \\ (136.53) \end{gathered}$	$\begin{gathered} 120.9 \\ (163.92) \end{gathered}$	$\begin{gathered} 134.3 \\ (182.09) \end{gathered}$	$\begin{aligned} & 147.7 \\ & (200.25) \end{aligned}$	$\begin{gathered} 188.0 \\ (254.89) \end{gathered}$	$\begin{gathered} 174.6 \\ (236.73) \end{gathered}$	$\begin{gathered} 134.3 \\ (182.09) \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{aligned} & 115.0 \\ & (155.92) \end{aligned}$	$\begin{gathered} 138.0 \\ (187.10) \end{gathered}$	$\begin{aligned} & 153.3 \\ & (207.85) \end{aligned}$	$\begin{gathered} 168.6 \\ (228.59) \end{gathered}$	$\begin{gathered} 214.6 \\ (290.96) \end{gathered}$	$\begin{gathered} 199.3 \\ (270.21) \end{gathered}$	$\begin{aligned} & 153.3 \\ & (207.85) \end{aligned}$
	ASTM A354 Grade BC	$\begin{aligned} & 100.7 \\ & (136.53) \end{aligned}$	$\begin{gathered} 120.9 \\ (163.92) \end{gathered}$	$\begin{gathered} 134.3 \\ (182.09) \end{gathered}$	$\begin{gathered} 147.7 \\ (200.25) \end{gathered}$	$\begin{gathered} 188.0 \\ (254.89) \end{gathered}$	$\begin{gathered} 174.6 \\ (236.73) \end{gathered}$	$\begin{aligned} & 134.3 \\ & (182.09) \end{aligned}$

All values in foot pounds and (Newton meters)								
Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for:					
			Loctite 222 or 262	${ }_{242}^{\text {Loctite }}$	Loctite \|271	$\left\lvert\, \begin{array}{\|l\|l} \text { Loctite } \\ \hline 272 \end{array}\right.$	$\left\lvert\, \begin{array}{\|l\|l} \mid \text { Loctite } \end{array}\right.$	Bare
9/16-18	SAE Grade 1 ASTM A307	$\begin{gathered} 35.3 \\ (47.86) \end{gathered}$	$\begin{gathered} 42.4 \\ (57.49) \\ \hline \end{gathered}$	$\begin{gathered} 47.1 \\ (63.86) \end{gathered}$	$\begin{gathered} 51.8 \\ (70.23) \end{gathered}$	$\begin{gathered} 66.0 \\ (89.48) \\ \hline \end{gathered}$	$\begin{gathered} 61.2 \\ (82.98) \end{gathered}$	$\begin{gathered} 47.1 \\ (63.86) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 59.1 \\ (80.13) \\ \hline \end{gathered}$	$\begin{gathered} 70.9 \\ (96.13) \\ \hline \end{gathered}$	$\begin{gathered} 78.8 \\ (106.84) \\ \hline \end{gathered}$	$\begin{gathered} 86.6 \\ (117.41) \\ \hline \end{gathered}$	$\begin{gathered} 110.3 \\ (149.55) \\ \hline \end{gathered}$	$\begin{gathered} 102.4 \\ (138.84) \\ \hline \end{gathered}$	$\begin{gathered} 78.8 \\ (106.84) \\ \hline \end{gathered}$
	SAE Grade 4	$\begin{gathered} 69.6 \\ (94.36) \end{gathered}$	$\begin{gathered} 83.5 \\ (113.21) \end{gathered}$	$\begin{gathered} 92.8 \\ (125.82) \end{gathered}$	$\begin{gathered} 102.1 \\ (138.43) \end{gathered}$	$\begin{gathered} 129.9 \\ (176.12) \end{gathered}$	$\begin{gathered} 120.7 \\ (163.65) \end{gathered}$	$\begin{gathered} 92.8 \\ (125.85) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 91.2 \\ (123.65) \end{gathered}$	$\begin{gathered} 109.5 \\ (148.46) \end{gathered}$	$\begin{gathered} 121.6 \\ (164.87) \end{gathered}$	$\begin{gathered} 133.8 \\ (181.40) \end{gathered}$	$\begin{gathered} 170.3 \\ (230.90) \\ \hline \end{gathered}$	$\begin{gathered} 158.1 \\ (214.36) \end{gathered}$	$\begin{gathered} 121.6 \\ (164.87) \end{gathered}$
	SAE Grade 7	$\begin{gathered} 112.3 \\ (152.26) \\ \hline \end{gathered}$	$\begin{gathered} 134.8 \\ (182.76) \\ \hline \end{gathered}$	$\begin{gathered} 149.8 \\ (203.10) \\ \hline \end{gathered}$	$\begin{gathered} 164.7 \\ (223.30) \\ \hline \end{gathered}$	$\begin{gathered} 209.7 \\ (284.32) \\ \hline \end{gathered}$	$\begin{gathered} 194.7 \\ (263.98) \\ \hline \end{gathered}$	$\begin{gathered} 149.8 \\ (203.10) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 128.7 \\ (174.61) \end{gathered}$	$\begin{gathered} 154.4 \\ (209.34) \end{gathered}$	$\begin{gathered} 171.6 \\ (232.66) \end{gathered}$	$\begin{gathered} 188.7 \\ (255.84) \end{gathered}$	$\begin{gathered} 240.2 \\ (325.67) \end{gathered}$	$\begin{gathered} 223.0 \\ (302.35) \end{gathered}$	$\begin{gathered} 171.6 \\ (232.66) \end{gathered}$
	ASTM A354 Grade BC	-	-	-	-	-	-	-

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for:					
			Loctite 222 or 262	$\left\lvert\, \begin{array}{\|l\|l\|l\|} \hline \text { Loctite } \end{array}\right.$	$\left.\right\|_{271} ^{\text {Loctite }}$	$\left\lvert\, \begin{array}{\|l\|l} \text { Loctite } \\ 272 \end{array}\right.$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 277 \end{aligned}\right.$	Bare
5/8-11	SAE Grade 1 ASTM A307	$\begin{gathered} 44 \\ (59.66) \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ (70.50) \\ \hline \end{gathered}$	$\begin{gathered} 58.2 \\ (78.90) \end{gathered}$	$\begin{gathered} 64 \\ (86.77) \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ (109.82) \end{gathered}$	$\begin{gathered} 76 \\ (103.04) \\ \hline \end{gathered}$	$\begin{gathered} 58 \\ (78.64) \\ \hline \end{gathered}$
	SAE Grade 2	$\begin{gathered} 72.7 \\ (98.57) \\ \hline \end{gathered}$	$\begin{gathered} 87.2 \\ (118.23) \\ \hline \end{gathered}$	$\begin{gathered} 96.9 \\ (131.38) \\ \hline \end{gathered}$	$\begin{gathered} 106.6 \\ (144.53) \end{gathered}$	$\begin{gathered} 135.6 \\ (183.85) \end{gathered}$	$\begin{gathered} 125.9 \\ (170.70) \end{gathered}$	$\begin{gathered} 96.9 \\ (131.38) \\ \hline \end{gathered}$
	SAE Grade 4	$\begin{gathered} 86.1 \\ (116.74) \\ \hline \end{gathered}$	$\begin{gathered} 103.4 \\ (140.19) \\ \hline \end{gathered}$	$\begin{gathered} 114.8 \\ (155.65) \end{gathered}$	$\begin{gathered} 126.3 \\ (171.24) \end{gathered}$	$\begin{gathered} 160.8 \\ (218.02) \end{gathered}$	$\begin{gathered} 149.3 \\ (202.42) \\ \hline \end{gathered}$	$\begin{gathered} 114.8 \\ (155.65) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 112.5 \\ (152.53) \end{gathered}$	$\begin{gathered} 135.0 \\ (183.04) \end{gathered}$	$\begin{aligned} & 150.0 \\ & (203.37) \end{aligned}$	$\begin{gathered} 165.0 \\ (223.71) \end{gathered}$	$\begin{gathered} 210.0 \\ (284.72) \end{gathered}$	$\begin{aligned} & 195.0 \\ & (264.38) \end{aligned}$	$\begin{gathered} 150.0 \\ (203.37) \end{gathered}$
	SAE Grade 7	$\begin{gathered} 138.9 \\ (188.32) \end{gathered}$	$\begin{gathered} 166.6 \\ (225.88) \\ \hline \end{gathered}$	$\begin{gathered} 185.2 \\ (251.10) \end{gathered}$	$\begin{gathered} 203.7 \\ (276.18) \\ \hline \end{gathered}$	$\begin{gathered} 259.2 \\ (351.43) \end{gathered}$	$\begin{gathered} 240.7 \\ (326.35) \end{gathered}$	$\begin{gathered} 185.2 \\ (251.10) \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 158.8 \\ (215.30) \end{gathered}$	${ }_{(258.28}^{190.5}$	$\begin{gathered} 211.7 \\ (287.03) \end{gathered}$	$\begin{gathered} 232.9 \\ (315.77) \end{gathered}$	$\begin{gathered} 296.4 \\ (401.86) \end{gathered}$	$\begin{gathered} 275.2 \\ (373.12) \end{gathered}$	$\begin{gathered} 211.7 \\ (287.03) \end{gathered}$
	ASTM A354 Grade BC	$\begin{gathered} 139.2 \\ (188.73) \end{gathered}$	$\begin{aligned} & 167.0 \\ & (226.42) \end{aligned}$	$\begin{gathered} 185.5 \\ (251.50) \end{gathered}$	$\begin{gathered} 204.1 \\ (276.72) \end{gathered}$	$\begin{gathered} 259.8 \\ (352.24) \end{gathered}$	$\begin{gathered} 241.2 \\ (327.02) \end{gathered}$	$\begin{gathered} 185.5 \\ (251.50) \end{gathered}$

All values in foot pounds and (Newton meters)								
Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for:					
			Loctite 262	$\left\lvert\, \begin{array}{\|l\|l} \text { Loctite } \\ 242 \end{array}\right.$	$\left\lvert\, \begin{array}{\|l\|} \text { Loctite } \\ 271 \end{array}\right.$	$\left\lvert\, \begin{array}{\|l\|l} \text { Loctite } \\ 272 \end{array}\right.$	$\left\lvert\, \begin{array}{\|l} \text { Loctite } \\ 277 \end{array}\right.$	Bare
5/8-18	SAE Grade 1 ASTM A307	$\begin{gathered} 49.5 \\ (67.11) \end{gathered}$	$\begin{gathered} 59.4 \\ (80.54) \\ \hline \end{gathered}$	$\begin{gathered} 66.0 \\ (89.48) \\ \hline \end{gathered}$	$\begin{gathered} 72.6 \\ (98.43) \end{gathered}$	$\begin{gathered} 92.4 \\ (125.27) \\ \hline \end{gathered}$	$\begin{array}{c\|} 85.8 \\ (116.33) \\ \hline \end{array}$	$\begin{gathered} 66.0 \\ (89.48) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 82.6 \\ (112.00) \end{gathered}$	$\begin{gathered} 99.1 \\ (134.36) \end{gathered}$	$\begin{gathered} 110.2 \\ (149.41) \end{gathered}$	$\begin{gathered} 121.2 \\ (164.33) \end{gathered}$	$\begin{gathered} 154.2 \\ (209.07) \end{gathered}$	$\begin{gathered} 143.2 \\ (194.15) \end{gathered}$	$\begin{gathered} 110.2 \\ (149.41) \end{gathered}$
	SAE Grade 4	$\begin{gathered} 97.3 \\ (131.92) \end{gathered}$	$\begin{gathered} 116.7 \\ (158.22) \end{gathered}$	$\begin{gathered} 129.7 \\ (175.85) \end{gathered}$	$\begin{gathered} 142.7 \\ (193.48) \end{gathered}$	$\begin{gathered} 181.6 \\ (246.22) \end{gathered}$	$\begin{gathered} 168.6 \\ (228.59) \end{gathered}$	$\begin{gathered} 129.7 \\ (175.85) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 127.7 \\ (173.14) \end{gathered}$	$\begin{gathered} 153.3 \\ (207.85) \end{gathered}$	$\begin{gathered} 170.3 \\ (230.90) \end{gathered}$	$\begin{gathered} 187.3 \\ (253.95) \end{gathered}$	$\begin{gathered} 238.4 \\ (323.23) \end{gathered}$	$\begin{gathered} 221.4 \\ (300.18) \end{gathered}$	$\begin{gathered} 170.3 \\ (230.90) \end{gathered}$
	SAE Grade 7	$\begin{gathered} 157.6 \\ (213.68) \\ \hline \end{gathered}$	$\begin{gathered} 189.1 \\ (256.39) \\ \hline \end{gathered}$	$\begin{gathered} 210.2 \\ (285.00) \\ \hline \end{gathered}$	$\begin{gathered} 231.2 \\ (313.47) \\ \hline \end{gathered}$	$\begin{gathered} 294.2 \\ (398.88) \\ \hline \end{gathered}$	$\begin{gathered} 273.2 \\ (370.41) \\ \hline \end{gathered}$	$\begin{gathered} 210.2 \\ (285.00) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 179.9 \\ (243.91) \end{gathered}$	$\begin{gathered} 215.9 \\ (292.72) \end{gathered}$	$\begin{gathered} 239.8 \\ (325.13) \end{gathered}$	$\begin{gathered} 263.8 \\ (357.66) \end{gathered}$	$\begin{gathered} 335.8 \\ (455.28) \end{gathered}$	$\begin{gathered} 311.8 \\ (422.74) \end{gathered}$	$\begin{gathered} 239.8 \\ (325.13) \end{gathered}$
	ASTM A354 Grade BC	-	-	-	-	-	-	-

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for:					
			$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 222 \\ & 262 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & \hline 242 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 271 \end{aligned}\right.$	$\mid{ }_{272}^{\mid L o c t i t e}$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & \hline 277 \end{aligned}\right.$	Bare
3/4-10	SAE Grade 1 ASTM A307	$\begin{gathered} 77 \\ (104.40) \\ \hline \end{gathered}$	$\begin{gathered} 93 \\ (126.09) \\ \hline \end{gathered}$	$\begin{gathered} 103.1 \\ (139.78) \end{gathered}$	$\begin{gathered} 113 \\ (153.20) \end{gathered}$	$\begin{gathered} 144 \\ (195.24) \end{gathered}$	$\begin{gathered} 134 \\ (181.68) \\ \hline \end{gathered}$	$\begin{gathered} 103 \\ (139.65) \\ \hline \end{gathered}$
	SAE Grade 2	$\begin{gathered} 129.4 \\ (175.44) \end{gathered}$	$\begin{gathered} 155.3 \\ (210.55) \end{gathered}$	$\begin{gathered} 172.5 \\ (233.88) \end{gathered}$	$\begin{gathered} 189.8 \\ (257.33) \end{gathered}$	$\begin{gathered} 241.5 \\ (327.43) \end{gathered}$	$\begin{gathered} 224.3 \\ (304.11) \\ \hline \end{gathered}$	$\begin{gathered} 172.5 \\ (233.88) \\ \hline \end{gathered}$
	SAE Grade 4	$\begin{gathered} 152.6 \\ (206.90) \\ \hline \end{gathered}$	$\begin{gathered} 183.1 \\ (248.25) \end{gathered}$	$\begin{gathered} 203.4 \\ (275.77) \\ \hline \end{gathered}$	$\begin{gathered} 223.8 \\ (303.43) \end{gathered}$	$\begin{gathered} 284.8 \\ (386.14) \end{gathered}$	$\begin{gathered} 264.5 \\ (358.61) \\ \hline \end{gathered}$	$\begin{gathered} 203.4 \\ (275.77) \\ \hline \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 199.7 \\ (270.76) \end{gathered}$	$\begin{gathered} 239.6 \\ (324.85) \end{gathered}$	$\begin{gathered} 266.3 \\ (361.05) \end{gathered}$	$\begin{gathered} 292.9 \\ (397.12) \end{gathered}$	$\begin{gathered} 372.8 \\ (505.45) \end{gathered}$	$\begin{gathered} 346.1 \\ (469.25) \end{gathered}$	$\begin{gathered} 266.3 \\ (361.05) \end{gathered}$
	SAE Grade 7	$\begin{gathered} 246.8 \\ (334.62) \end{gathered}$	$\begin{gathered} 296.2 \\ (401.60) \end{gathered}$	$\begin{gathered} 329.1 \\ (446.20) \end{gathered}$	$\begin{gathered} 362.0 \\ (355.22) \end{gathered}$	$\begin{gathered} 460.7 \\ (624.63) \end{gathered}$	$\begin{gathered} 427.8 \\ (580.02) \\ \hline \end{gathered}$	$\begin{gathered} 329.1 \\ (446.20) \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 282.0 \\ (382.34) \end{gathered}$	$\begin{gathered} 338.3 \\ (458.67) \end{gathered}$	$\begin{gathered} 375.9 \\ (509.65) \end{gathered}$	$\begin{gathered} 413.5 \\ (560.63) \end{gathered}$	$\begin{gathered} 526.3 \\ (713.57) \end{gathered}$	$\begin{gathered} 488.7 \\ (662.59) \end{gathered}$	$\begin{gathered} 375.9 \\ (509.65) \end{gathered}$
	ASTM A354 Grade BC	$\begin{gathered} 246.4 \\ (334.07) \end{gathered}$	$\begin{gathered} 295.7 \\ (400.92) \end{gathered}$	$\begin{gathered} 328.6 \\ (445.53) \end{gathered}$	$\begin{gathered} 361.5 \\ (490.13) \end{gathered}$	$\begin{aligned} & 460.0 \\ & (623.67) \end{aligned}$	$\begin{gathered} 427.2 \\ (579.20) \end{gathered}$	$\begin{gathered} 328.6 \\ (445.53) \end{gathered}$

All values in foot pounds and (Newton meters)								
Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for:					
			Loctite 222 or 262	${ }_{242}^{\text {Loctite }}$	$\left\lvert\, \begin{array}{\|l\|} \text { Loctite } \\ \hline 271 \end{array}\right.$	$\left\lvert\, \begin{array}{\|l\|l} \text { Loctite } \\ \hline 272 \end{array}\right.$	$\left\lvert\, \begin{array}{\|l\|l} \mid \text { Loctite } \end{array}\right.$	Bare
3/4-16	SAE Grade 1 ASTM A307	$\begin{gathered} 86.5 \\ (117.28) \end{gathered}$	$\begin{gathered} 103.8 \\ (140.73) \end{gathered}$	$\begin{gathered} 115.3 \\ (156.33) \end{gathered}$	$\begin{gathered} 126.8 \\ (171.92) \end{gathered}$	$\begin{gathered} 161.4 \\ (218.83) \end{gathered}$	$\begin{gathered} 149.9 \\ (203.24) \end{gathered}$	$\begin{gathered} 115.3 \\ (156.33) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 144.1 \\ (195.37) \\ \hline \end{gathered}$	$\begin{gathered} 173.0 \\ (234.56) \\ \hline \end{gathered}$	$\begin{gathered} 192.2 \\ (260.59) \\ \hline \end{gathered}$	$\begin{gathered} 211.4 \\ (286.62) \\ \hline \end{gathered}$	$\begin{gathered} 269.1 \\ (364.85) \\ \hline \end{gathered}$	$\begin{gathered} 249.8 \\ (338.68) \\ \hline \end{gathered}$	$\begin{gathered} 192.2 \\ (260.59) \\ \hline \end{gathered}$
	SAE Grade 4	$\begin{gathered} 170.2 \\ (230.76) \end{gathered}$	$\begin{gathered} 204.2 \\ (276.86) \end{gathered}$	$\begin{gathered} 226.9 \\ (307.64) \\ \hline \end{gathered}$	$\begin{gathered} 249.6 \\ (338.41) \end{gathered}$	$\begin{gathered} 317.6 \\ (430.61) \end{gathered}$	$\begin{gathered} 294.9 \\ (399.15) \end{gathered}$	$\begin{gathered} 226.9 \\ (307.64) \\ \hline \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 222.9 \\ (302.21) \end{gathered}$	$\begin{gathered} 267.5 \\ (362.68) \\ \hline \end{gathered}$	$\begin{gathered} 297.2 \\ (402.95) \\ \hline \end{gathered}$	$\begin{gathered} 326.9 \\ (443.22) \\ \hline \end{gathered}$	$\begin{gathered} 416.1 \\ (564.16) \end{gathered}$	$\begin{gathered} 386.3 \\ (523.75) \\ \hline \end{gathered}$	$\begin{gathered} 297.2 \\ (402.95) \\ \hline \end{gathered}$
	SAE Grade 7	$\begin{gathered} 275.6 \\ (373.66) \\ \hline \end{gathered}$	$\begin{gathered} 330.8 \\ (448.50) \\ \hline \end{gathered}$	$\begin{gathered} 367.5 \\ (498.26) \\ \hline \end{gathered}$	$\begin{gathered} 404.3 \\ (548.16) \\ \hline \end{gathered}$	$\begin{gathered} 514.5 \\ (697.57) \\ \hline \end{gathered}$	$\begin{gathered} 477.8 \\ (647.81) \\ \hline \end{gathered}$	$\begin{gathered} 367.5 \\ (498.26) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 315.0 \\ (427.08) \end{gathered}$	$\begin{gathered} 378.0 \\ (512.50) \end{gathered}$	$\begin{gathered} 420.0 \\ (569.44) \end{gathered}$	$\begin{aligned} & 462.0 \\ & (626.39) \end{aligned}$	$\begin{gathered} 588.0 \\ (797.22) \end{gathered}$	$\begin{gathered} 546.0 \\ (740.28) \end{gathered}$	$\begin{gathered} 420.0 \\ (569.44) \end{gathered}$
	ASTM A354 Grade BC	-	-	-	-	-	-	-

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for:					
			Loctite 222 or 262	$\mid{ }_{242}^{\text {Loctite }}$	$\left\lvert\, \begin{array}{\|l\|} \mid \text { Loctite } \end{array}\right.$	$\mid{ }_{272}^{\text {Loctite }}$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 277 \end{aligned}\right.$	Bare
7/8-9	SAE Grade 1 ASTM A307	$\begin{gathered} 124.7 \\ (169.07) \\ \hline \end{gathered}$	$\begin{gathered} 149.6 \\ (202.83) \\ \hline \end{gathered}$	$\begin{gathered} 166.3 \\ (225.47) \end{gathered}$	$\begin{gathered} 182.9 \\ (247.98) \end{gathered}$	$\begin{gathered} 232.8 \\ (315.63) \\ \hline \end{gathered}$	$\begin{gathered} 216.1 \\ (293.0) \\ \hline \end{gathered}$	$\begin{gathered} 166.3 \\ (225.47) \\ \hline \end{gathered}$
	SAE Grade 2	$\begin{gathered} 124.7 \\ (169.07) \end{gathered}$	$\begin{gathered} 149.6 \\ (202.83) \\ \hline \end{gathered}$	$\begin{gathered} 166.3 \\ (225.47) \\ \hline \end{gathered}$	$\begin{gathered} 182.9 \\ (247.98) \\ \hline \end{gathered}$	$\begin{gathered} 232.8 \\ (315.63) \\ \hline \end{gathered}$	$\begin{gathered} 216.1 \\ (293.00) \end{gathered}$	$\begin{gathered} 166.3 \\ (255.47) \\ \hline \end{gathered}$
	SAE Grade 4	$\begin{gathered} 246.1 \\ (333.67) \end{gathered}$	$\begin{gathered} 295.3 \\ (400.37) \\ \hline \end{gathered}$	$\begin{gathered} 328.1 \\ (444.84) \end{gathered}$	$\begin{gathered} 360.9 \\ (489.32) \\ \hline \end{gathered}$	$\begin{gathered} 459.4 \\ (622.86) \\ \hline \end{gathered}$	$\begin{gathered} 426.6 \\ (578.40) \\ \hline \end{gathered}$	$\begin{gathered} 328.1 \\ (444.84) \\ \hline \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 322.4 \\ (437.11) \end{gathered}$	$\begin{gathered} 386.9 \\ (524.57) \end{gathered}$	$\begin{gathered} 429.8 \\ (582.73) \end{gathered}$	$\begin{aligned} & 472.8 \\ & (641.03) \end{aligned}$	$\begin{gathered} 601.8 \\ (815.93) \end{gathered}$	$\begin{gathered} 558.8 \\ (757.63) \end{gathered}$	$\begin{gathered} 429.8 \\ (582.73) \end{gathered}$
	SAE Grade 7	$\begin{gathered} 397.9 \\ (539.48) \end{gathered}$	$\begin{gathered} 477.4 \\ (647.27) \\ \hline \end{gathered}$	$\begin{gathered} 530.5 \\ (719.26) \end{gathered}$	$\begin{gathered} 583.5 \\ (791.12) \end{gathered}$	$\begin{gathered} 742.7 \\ (1007.00) \end{gathered}$	$\begin{gathered} 689.6 \\ (935.00) \\ \hline \end{gathered}$	$\begin{gathered} 530.5 \\ (719.26) \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 454.5 \\ (616.22) \end{gathered}$	$\begin{gathered} 545.3 \\ (739.33) \end{gathered}$	$\begin{gathered} 605.9 \\ (821.49) \end{gathered}$	$\begin{gathered} 666.5 \\ (903.65) \end{gathered}$	$\begin{gathered} 848.3 \\ (1150.14) \end{gathered}$	$\begin{gathered} 787.7 \\ (1067.98) \end{gathered}$	$\begin{gathered} 605.9 \\ (821.49) \end{gathered}$
	ASTM A354 Grade BC	$\begin{gathered} 397.9 \\ (539.48) \end{gathered}$	$\begin{aligned} & 477.4 \\ & (647.27) \end{aligned}$	$\begin{gathered} 530.5 \\ (719.26) \end{gathered}$	$\begin{gathered} 583.5 \\ (791.12) \end{gathered}$	$\begin{gathered} 742.7 \\ (1007.00) \end{gathered}$	$\begin{gathered} 689.6 \\ (935.00) \end{gathered}$	$\begin{gathered} 530.5 \\ (719.26) \end{gathered}$

All values in foot pounds and (Newton meters)								
Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for:					
			Loctite 262	$\left\lvert\, \begin{array}{\|l\|l} \text { Loctite } \\ 242 \end{array}\right.$	$\left\lvert\, \begin{array}{\|l\|} \text { Loctite } \\ 271 \end{array}\right.$	$\left\lvert\, \begin{array}{\|l\|l} \text { Loctite } \\ 272 \end{array}\right.$	$\left\lvert\, \begin{array}{\|l} \text { Loctite } \\ 277 \end{array}\right.$	Bare
7/8-14	SAE Grade 1 ASTM A307	$\begin{gathered} 137.8 \\ (186.83) \end{gathered}$	$\begin{gathered} 165.4 \\ (224.25) \end{gathered}$	$\begin{gathered} 183.8 \\ (249.20) \end{gathered}$	$\begin{gathered} 202.1 \\ (274.01) \end{gathered}$	$\begin{gathered} 257.3 \\ (348.85) \\ \hline \end{gathered}$	$\begin{gathered} 238.9 \\ (323.90) \end{gathered}$	$\begin{gathered} 183.8 \\ (249.20) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 137.8 \\ (186.83) \end{gathered}$	$\begin{gathered} 165.4 \\ (224.25) \end{gathered}$	$\begin{gathered} 183.8 \\ (249.20) \end{gathered}$	$\begin{gathered} 202.1 \\ (274.01) \end{gathered}$	$\begin{gathered} 257.3 \\ (348.85) \end{gathered}$	$\begin{gathered} 238.9 \\ (323.90) \end{gathered}$	$\begin{gathered} 183.8 \\ (249.20) \end{gathered}$
	SAE Grade 4	$\begin{gathered} 271.5 \\ (368.11) \end{gathered}$	$\begin{gathered} 325.8 \\ (441.73) \end{gathered}$	$\begin{gathered} 362.0 \\ (490.80) \end{gathered}$	$\begin{gathered} 398.2 \\ (539.89) \end{gathered}$	$\begin{array}{c\|} \hline 506.8 \\ (687.13) \end{array}$	$\begin{gathered} 470.6 \\ (638.05) \end{gathered}$	$\begin{gathered} 362.0 \\ (490.80) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 355.2 \\ (481.59) \end{gathered}$	$\begin{gathered} 426.2 \\ (577.85) \end{gathered}$	$\begin{gathered} 473.6 \\ (642.12) \end{gathered}$	$\begin{gathered} 521.0 \\ (706.38) \end{gathered}$	$\begin{gathered} 663.0 \\ (898.91) \end{gathered}$	$\begin{gathered} 615.7 \\ (834.78) \end{gathered}$	$\begin{gathered} 473.6 \\ (642.12) \end{gathered}$
	SAE Grade 7	$\begin{gathered} 438.0 \\ (593.85) \end{gathered}$	$\begin{gathered} 525.7 \\ (712.75) \end{gathered}$	$\begin{gathered} 584.1 \\ (791.93) \\ \hline \end{gathered}$	$\begin{gathered} 642.5 \\ (871.11) \\ \hline \end{gathered}$	$\begin{gathered} 817.7 \\ (1108.65) \end{gathered}$	$\begin{gathered} 759.3 \\ (1029.47) \\ \hline \end{gathered}$	$\begin{gathered} 584.1 \\ (791.93) \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 501.2 \\ (679.54) \end{gathered}$	$\begin{gathered} 601.5 \\ (815.53) \end{gathered}$	$\begin{gathered} 668.3 \\ (906.09) \end{gathered}$	$\begin{gathered} 735.1 \\ (996.66) \end{gathered}$	$\begin{gathered} 935.6 \\ (1268.50) \end{gathered}$	$\begin{gathered} 868.8 \\ (1177.94) \end{gathered}$	$\begin{gathered} 668.3 \\ (906.09) \end{gathered}$
	ASTM A354 Grade BC	-	-	-	-	-	-	-

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for:					
			Loctite 222 or 262	$\mid{ }_{242}^{\text {Loctite }}$	$\left\lvert\, \begin{array}{l\|l\|} \text { Loctite } \\ \hline 271 \end{array}\right.$	$\left\lvert\, \begin{array}{\|l\|l\|l\|} \mid \text { Loctite } \end{array}\right.$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 277 \end{aligned}\right.$	Bare
1-8	SAE Grade 1 ASTM A307	$\begin{gathered} 187.5 \\ (254.22) \end{gathered}$	$\begin{gathered} 225.0 \\ (305.06) \end{gathered}$	$\begin{gathered} 250.0 \\ (338.95) \end{gathered}$	$\stackrel{275.0}{(372.85)}$	$\begin{gathered} 350.0 \\ (474.54) \end{gathered}$	$\begin{gathered} 325.0 \\ (440.64) \end{gathered}$	$\begin{gathered} 250.0 \\ (338.95) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 187.5 \\ (254.22) \end{gathered}$	$\begin{gathered} 225.0 \\ (305.06) \end{gathered}$	$\begin{gathered} 250.0 \\ (338.95) \end{gathered}$	$\begin{gathered} 275.0 \\ (372.85) \end{gathered}$	$\begin{gathered} 350.0 \\ (474.54) \end{gathered}$	$\begin{gathered} 325.0 \\ (440.64) \end{gathered}$	$\begin{aligned} & 250.0 \\ & (338.95) \end{aligned}$
	SAE Grade 4	$\begin{gathered} 369.4 \\ (500.84) \end{gathered}$	$\begin{gathered} 443.3 \\ (601.03) \end{gathered}$	$\begin{gathered} 492.5 \\ (667.74) \end{gathered}$	$\begin{gathered} 541.8 \\ (734.58) \end{gathered}$	$\begin{gathered} 689.5 \\ (934.84) \\ \hline \end{gathered}$	$\begin{gathered} 640.3 \\ (868.13) \end{gathered}$	$\begin{gathered} 492.5 \\ (667.74) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 482.8 \\ (654.59) \end{gathered}$	$\begin{gathered} 579.4 \\ (785.56) \end{gathered}$	$\begin{gathered} 643.8 \\ (872.88) \end{gathered}$	$\begin{gathered} 708.1 \\ (960.05) \end{gathered}$	$\begin{gathered} 901.3 \\ (1222.00) \end{gathered}$	$\begin{gathered} 836.9 \\ (1134.69) \end{gathered}$	$\begin{gathered} 643.8 \\ (872.88) \end{gathered}$
	SAE Grade 7	$\begin{gathered} 596.3 \\ (808.47) \end{gathered}$	$\begin{gathered} 715.5 \\ (970.09) \end{gathered}$	$\begin{gathered} 795.0 \\ (1077.88) \end{gathered}$	$\begin{gathered} 874.5 \\ (1185.66) \end{gathered}$	$\begin{gathered} 1113.0 \\ (1509.03) \end{gathered}$	$\begin{gathered} 1033.5 \\ (1401.24) \end{gathered}$	$\begin{gathered} 795.0 \\ (1077.88) \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{aligned} & 681.6 \\ & (924.13) \end{aligned}$	$\begin{gathered} 817.9 \\ (1108.92) \end{gathered}$	$\begin{gathered} 908.8 \\ (1232.17) \end{gathered}$	$\begin{gathered} 999.6 \\ (1355.28) \end{gathered}$	$\begin{gathered} 1272.3 \\ (1725.00) \end{gathered}$	$\begin{gathered} 1181.4 \\ (1601.77) \end{gathered}$	$\begin{gathered} 908.8 \\ (1232.17) \end{gathered}$
	$\underset{\text { BC }}{\text { ASTM A354 Grade }}$	$\begin{gathered} 596.7 \\ (809.01) \end{gathered}$	$\begin{gathered} 716.1 \\ (970.90) \end{gathered}$	$\begin{gathered} 795.6 \\ (1078.69) \end{gathered}$	$\begin{gathered} 875.2 \\ (1186.61) \end{gathered}$	$\begin{gathered} 1113.9 \\ (1510.25) \end{gathered}$	$\begin{gathered} 1034.3 \\ (1402.32) \end{gathered}$	$\begin{gathered} 795.6 \\ (1078.69) \end{gathered}$

All values in foot pounds and (Newton meters)								
Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for:					
			Loctite 222 or 262	$\mid{ }_{242}^{\text {Loctite }}$	$\left\lvert\, \begin{array}{\|l\|} \text { Loctite } \\ 271 \end{array}\right.$	$\left\lvert\, \begin{array}{\|l\|l} \text { Loctite } \end{array}\right.$	$\left\lvert\, \begin{array}{\|l\|l} \text { Loctite } \\ \hline 277 \end{array}\right.$	Bare
1-12	SAE Grade 1 ASTM A307	$\begin{gathered} 205.3 \\ 278.35 \end{gathered}$	$\begin{gathered} 246.4 \\ (334.07) \end{gathered}$	$\begin{gathered} 273.8 \\ (371.22) \end{gathered}$	$\begin{gathered} 301.1 \\ (408.24) \end{gathered}$	$\begin{gathered} 383.3 \\ (519.69) \end{gathered}$	$\begin{gathered} 355.9 \\ (482.54) \end{gathered}$	$\begin{gathered} 273.8 \\ (371.22) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 205.3 \\ (278.35) \\ \hline \end{gathered}$	$\begin{gathered} 246.4 \\ (334.07) \\ \hline \end{gathered}$	$\begin{gathered} 273.8 \\ (371.22) \\ \hline \end{gathered}$	$\begin{gathered} 301.1 \\ (408.24) \\ \hline \end{gathered}$	$\begin{gathered} 383.3 \\ (519.69) \\ \hline \end{gathered}$	$\begin{gathered} 355.9 \\ (482.54) \\ \hline \end{gathered}$	$\begin{gathered} 273.8 \\ (371.22) \\ \hline \end{gathered}$
	SAE Grade 4	$\begin{gathered} 404.1 \\ (547.88) \end{gathered}$	$\begin{gathered} 484.9 \\ (657.44) \end{gathered}$	$\begin{gathered} 538.8 \\ (730.52) \end{gathered}$	$\begin{gathered} 592.6 \\ (803.46) \end{gathered}$	$\begin{gathered} 754.3 \\ (1022.70) \end{gathered}$	$\begin{gathered} 700.4 \\ (949.62) \end{gathered}$	$\begin{gathered} 538.8 \\ (730.52) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 528.8 \\ (716.96) \\ \hline \end{gathered}$	$\begin{gathered} 634.5 \\ (860.27) \\ \hline \end{gathered}$	$\begin{gathered} 705.0 \\ (955.85) \\ \hline \end{gathered}$	$\begin{gathered} 775.5 \\ (1051.44) \\ \hline \end{gathered}$	$\begin{gathered} 987.0 \\ (1338.19) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 916.5 \\ (1242.61) \\ \hline \end{array}$	$\begin{gathered} 705.0 \\ (955.85) \\ \hline \end{gathered}$
	SAE Grade 7	$\begin{gathered} 652.5 \\ (884.67) \\ \hline \end{gathered}$	$\begin{gathered} 783.0 \\ (1061.60) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 870.0 \\ (1179.56) \\ \hline \end{array}$	$\begin{gathered} 957.0 \\ (1297.52) \\ \hline \end{gathered}$	$\begin{gathered} 1218.0 \\ (1651.39) \\ \hline \end{gathered}$	$\begin{array}{\|c} 1131.0 \\ (1533.42) \\ \hline \end{array}$	$\begin{array}{\|c} 870.0 \\ (1179.56) \\ \hline \end{array}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 746.3 \\ (1011.85) \end{gathered}$	$\begin{gathered} 895.5 \\ (1214.14) \end{gathered}$	$\begin{gathered} 995.0 \\ (1349.04) \end{gathered}$	$\begin{gathered} 1094.5 \\ (1483.49) \end{gathered}$	$\begin{aligned} & 1393.0 \\ & (1888.66) \end{aligned}$	$\begin{gathered} 1293.5 \\ (1753.73) \end{gathered}$	$\begin{array}{\|c} 995.0 \\ (1349.04) \end{array}$
	ASTM A354 Grade BC	-	-	-	-	-	-	-

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 242 \end{aligned}\right.$	$\begin{array}{\|l} \text { Loctite } \\ 271 \end{array}$	$\begin{array}{\|l} \text { Loctite } \\ 272 \end{array}$	$\begin{array}{\|l} \text { Loctite } \\ 277 \end{array}$	Bare
1-14	SAE Grade 1 ASTM A307	$\begin{gathered} 210.0 \\ (284.72) \end{gathered}$	$\begin{gathered} 252.0 \\ (341.66) \end{gathered}$	$\begin{gathered} 280.0 \\ (379.63) \end{gathered}$	$\begin{gathered} 308.0 \\ (417.60) \end{gathered}$	$\begin{gathered} 392.0 \\ (531.48) \end{gathered}$	$\begin{gathered} 364.0 \\ (493.52) \end{gathered}$	$\begin{gathered} 280.0 \\ (379.63) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 210.0 \\ (284.72) \end{gathered}$	$\begin{gathered} 252.0 \\ (341.66) \end{gathered}$	$\begin{gathered} 280.0 \\ (379.63) \\ \hline \end{gathered}$	$\begin{gathered} 308.0 \\ (417.60) \\ \hline \end{gathered}$	$\begin{gathered} 392.0 \\ (531.48) \\ \hline \end{gathered}$	$\begin{gathered} 364.0 \\ (493.52) \\ \hline \end{gathered}$	$\begin{gathered} 280.0 \\ (379.63) \\ \hline \end{gathered}$
	SAE Grade 4	$\begin{gathered} 413.4 \\ (560.50) \end{gathered}$	$\begin{gathered} 496.1 \\ (672.62) \end{gathered}$	$\begin{gathered} 551.3 \\ (747.46) \end{gathered}$	$\begin{gathered} 606.4 \\ (822.17) \end{gathered}$	$\begin{gathered} 771.8 \\ (1046.42) \end{gathered}$	$\begin{gathered} 716.6 \\ (971.58) \end{gathered}$	$\begin{gathered} 551.3 \\ (747.46) \end{gathered}$
	SAE Grade 5	$\begin{gathered} 540.9 \\ (733.36) \\ \hline \end{gathered}$	$\begin{gathered} 649.1 \\ (880.06) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 721.3 \\ (977.95) \\ \hline \end{array}$	$\begin{array}{\|c} 793.4 \\ (1075.70) \\ \hline \end{array}$	$\begin{gathered} 1009.8 \\ (1369.10) \\ \hline \end{gathered}$	$\begin{array}{\|c} 937.6 \\ (1271.22) \\ \hline \end{array}$	$\begin{gathered} 721.3 \\ (977.95) \\ \hline \end{gathered}$
	SAE Grade 7	$\begin{gathered} 668.4 \\ (906.23) \\ \hline \end{gathered}$	$\begin{array}{\|c} 802.1 \\ (1087.50) \\ \hline \end{array}$	$\begin{gathered} 891.3 \\ (1208.44) \\ \hline \end{gathered}$	$\begin{array}{r} 980.4 \\ (1329.25) \\ \hline \end{array}$	$\begin{gathered} 1247.8 \\ (1691.79) \\ \hline \end{gathered}$	$\begin{array}{\|c} 1158.6 \\ (1570.85) \\ \hline \end{array}$	$\begin{gathered} 891.3 \\ (1208.44) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 764.1 \\ (1035.98) \end{gathered}$	$\begin{array}{\|c} 916.9 \\ (1243.15) \end{array}$	$\begin{array}{\|c} 1018.8 \\ (1381.31) \end{array}$	$\begin{array}{\|c\|} 1120.6 \\ (1519.33) \end{array}$	$\begin{gathered} 1426.3 \\ (1933.80) \end{gathered}$	$\begin{array}{\|c\|} 1324.4 \\ (1795.65) \end{array}$	$\begin{gathered} 1018.8 \\ (1381.30) \end{gathered}$
	ASTM A354 Grade BC	-	-	-	-	-	-	-

All values in foot pounds and (Newton meters)								
Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	$\underset{\mathbf{2 4 2}}{\text { Loctite }}$	$\begin{array}{\|l\|} \hline \text { Loctite } \\ 271 \end{array}$	$\begin{array}{\|l} \text { Loctite } \\ 272 \end{array}$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 277 \end{aligned}\right.$	Bare
1-1/8 • 7	SAE Grade 1 ASTM A307	$\begin{gathered} 265.8 \\ (360.37) \\ \hline \end{gathered}$	$\begin{gathered} 318.9 \\ (432.37) \\ \hline \end{gathered}$	$\begin{gathered} 354.4 \\ (480.50) \\ \hline \end{gathered}$	$\begin{gathered} 389.8 \\ (528.50) \\ \hline \end{gathered}$	$\begin{gathered} 496.1 \\ (672.62) \\ \hline \end{gathered}$	$\begin{gathered} 460.7 \\ (624.63) \\ \hline \end{gathered}$	$\begin{gathered} 354.4 \\ (480.50) \\ \hline \end{gathered}$
	SAE Grade 2	$\begin{gathered} 265.8 \\ (360.37) \end{gathered}$	$\begin{gathered} 318.9 \\ (432.37) \end{gathered}$	$\begin{gathered} 354.4 \\ (480.50) \end{gathered}$	$\begin{gathered} 389.8 \\ (528.50) \end{gathered}$	$\begin{gathered} 496.1 \\ (672.62) \end{gathered}$	$\begin{gathered} 460.7 \\ (624.63) \end{gathered}$	$\begin{gathered} 354.4 \\ (480.50) \end{gathered}$
	SAE Grade 4	$\begin{gathered} 523.1 \\ (709.23) \\ \hline \end{gathered}$	$\begin{gathered} 627.8 \\ (851.18) \\ \hline \end{gathered}$	$\begin{gathered} 697.5 \\ (945.68) \\ \hline \end{gathered}$	$\begin{gathered} 767.3 \\ (1040.32) \\ \hline \end{gathered}$	$\begin{gathered} 976.5 \\ (1323.96) \\ \hline \end{gathered}$	$\begin{gathered} 906.8 \\ (1229.46) \\ \hline \end{gathered}$	$\begin{gathered} 697.5 \\ (945.68) \\ \hline \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 595.9 \\ (807.93) \end{gathered}$	$\begin{gathered} 715.1 \\ (969.55) \end{gathered}$	$\begin{gathered} 794.5 \\ (1077.20) \end{gathered}$	$\begin{gathered} 874.0 \\ (1184.99) \end{gathered}$	$\begin{gathered} 1112.3 \\ (1508.07) \end{gathered}$	$\begin{array}{\|c\|} \hline 1032.9 \\ (1400.43) \end{array}$	$\begin{gathered} 794.5 \\ (1077.20) \end{gathered}$
	SAE Grade 7	$\begin{array}{\|c\|} 844.8 \\ (1145.40) \\ \hline \end{array}$	$\begin{gathered} 1013.8 \\ (1374.53) \\ \hline \end{gathered}$	$\begin{array}{\|c} 1126.4 \\ (1527.20) \\ \hline \end{array}$	$\begin{aligned} & 1239.0 \\ & (1679.86) \end{aligned}$	$\begin{gathered} 1577.0 \\ (2138.13) \end{gathered}$	$\begin{array}{\|c} 1464.3 \\ (1985.33) \\ \hline \end{array}$	$\begin{gathered} 1126.4 \\ (1527.20) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{array}{c\|} 966.1 \\ (1309.86) \end{array}$	$\begin{gathered} 1159.3 \\ (1571.80) \end{gathered}$	$\begin{gathered} 1288.1 \\ (1746.43) \end{gathered}$	$\begin{aligned} & 1416.9 \\ & (1921.06) \end{aligned}$	$\begin{gathered} 1803.4 \\ (2445.08) \end{gathered}$	$\begin{array}{\|c\|} \hline 1674.6 \\ (2270.46) \end{array}$	$\begin{gathered} 1288.1 \\ (1746.43) \end{gathered}$
	ASTM A354 Grade BC	$\begin{gathered} 844.8 \\ (1145.40) \end{gathered}$	$\begin{gathered} 1013.8 \\ (1374.53) \end{gathered}$	$\begin{gathered} 1126.4 \\ (1527.20) \end{gathered}$	$\begin{gathered} 1239.0 \\ (1679.86) \end{gathered}$	$\begin{gathered} 1577.0 \\ (2138.13) \end{gathered}$	$\begin{gathered} 1464.3 \\ (1985.33) \end{gathered}$	$\begin{gathered} 1126.4 \\ (1527.20) \end{gathered}$

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & \hline 242 \end{aligned}\right.$	$\left\lvert\, \begin{array}{\|l\|} \text { Loctite } \\ \hline 271 \end{array}\right.$	$\left\lvert\, \begin{array}{\|l\|l} \text { Loctite } \\ 272 \end{array}\right.$	$\mid{ }_{277}^{\text {Loctite }}$	Bare
1-1/8 • 12	SAE Grade 1 ASTM A307	$\begin{gathered} 297.4 \\ (403.22) \end{gathered}$	$\begin{gathered} 356.9 \\ (483.89) \end{gathered}$	$\begin{gathered} 396.6 \\ (537.72) \end{gathered}$	$\begin{gathered} 436.2 \\ (591.40) \end{gathered}$	$\begin{gathered} 555.2 \\ (752.75) \end{gathered}$	$\begin{gathered} 515.5 \\ (698.93) \end{gathered}$	$\begin{gathered} 396.6 \\ (537.72) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 297.4 \\ (403.22) \end{gathered}$	$\begin{gathered} 356.9 \\ (483.89) \end{gathered}$	$\begin{gathered} 396.6 \\ (537.72) \end{gathered}$	$\begin{gathered} 436.2 \\ (591.40) \end{gathered}$	$\begin{gathered} 555.2 \\ (752.75) \end{gathered}$	$\begin{gathered} 515.5 \\ (698.93) \end{gathered}$	$\begin{gathered} 396.6 \\ (537.72) \end{gathered}$
	SAE Grade 4	$\begin{gathered} 586.4 \\ (795.05) \end{gathered}$	$\begin{gathered} 703.7 \\ (954.09) \end{gathered}$	$\begin{gathered} 781.9 \\ (1060.12) \end{gathered}$	$\begin{gathered} 860.1 \\ (1166.14) \end{gathered}$	$\begin{gathered} 1094.6 \\ (1484.08) \end{gathered}$	$\begin{gathered} 1016.4 \\ (1378.06) \end{gathered}$	$\begin{gathered} 781.9 \\ (1060.12) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 667.6 \\ (905.14) \end{gathered}$	$\begin{gathered} 801.1 \\ (1086.15) \end{gathered}$	$\begin{gathered} 890.2 \\ (1206.95) \end{gathered}$	$\begin{gathered} 979.2 \\ (1327.62) \end{gathered}$	$\begin{gathered} 1246.2 \\ (1689.62) \end{gathered}$	$\begin{gathered} 1157.2 \\ (1568.95) \end{gathered}$	$\begin{gathered} 890.2 \\ (1206.95) \end{gathered}$
	SAE Grade 7	$\begin{array}{\|c\|} 948.2 \\ (1285.58) \\ \hline \end{array}$	$\begin{array}{\|c} 1137.8 \\ (1542.65) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1264.2 \\ (1714.02) \\ \hline \end{array}$	$\begin{gathered} 1390.6 \\ (1855.40) \\ \hline \end{gathered}$	$\begin{gathered} 1769.9 \\ (2399.66) \\ \hline \end{gathered}$	$\begin{gathered} 1643.5 \\ (2228.30) \\ \hline \end{gathered}$	$\begin{array}{\|c} 1264.2 \\ (1714.02) \\ \hline \end{array}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 1083.2 \\ (1468.62) \end{gathered}$	$\begin{aligned} & 1299.8 \\ & (1762.30) \end{aligned}$	$\begin{array}{\|c\|c} 1444.2 \\ (1958.07) \end{array}$	$\begin{aligned} & 1588.6 \\ & (2153.85) \end{aligned}$	$\begin{gathered} 2021.9 \\ (2741.33) \end{gathered}$	$\begin{gathered} 1877.5 \\ (2545.55) \end{gathered}$	$\begin{array}{\|l\|l} 1444.2 \\ (1958.07) \end{array}$
	ASTM A354 Grade BC	-	-	-	-	-	-	-

All values in foot pounds and (Newton meters)								
Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	Loctite	$\begin{array}{\|l} \text { Loctite } \\ 271 \end{array}$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 272 \end{aligned}\right.$	Loctite	Bare
1-1/4 - 7	SAE Grade 1 ASTM A307	$\begin{gathered} 375.0 \\ (508.43) \\ \hline \end{gathered}$	$\begin{gathered} 450.0 \\ (610.11) \\ \hline \end{gathered}$	$\begin{gathered} 500.0 \\ (677.91) \\ \hline \end{gathered}$	$\begin{gathered} 550.0 \\ (745.70) \\ \hline \end{gathered}$	$\begin{gathered} 700.0 \\ (949.07) \\ \hline \end{gathered}$	$\begin{gathered} 650.0 \\ (881.28) \\ \hline \end{gathered}$	$\begin{gathered} 500.0 \\ (677.91) \\ \hline \end{gathered}$
	SAE Grade 2	$\begin{gathered} 375.0 \\ (508.43) \end{gathered}$	$\begin{gathered} 450.0 \\ (610.11) \end{gathered}$	$\begin{gathered} 500.0 \\ (677.91) \end{gathered}$	$\begin{gathered} 550.0 \\ (745.70) \end{gathered}$	$\begin{gathered} 700.0 \\ (949.07) \end{gathered}$	$\begin{gathered} 650.0 \\ (881.28) \end{gathered}$	$\begin{gathered} 500.0 \\ (677.91) \end{gathered}$
	SAE Grade 4	$\begin{gathered} 738.3 \\ (1001.00) \\ \hline \end{gathered}$	$\begin{gathered} 885.9 \\ (1201.12) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 984.4 \\ (1334.67) \\ \hline \end{array}$	$\begin{gathered} 1082.8 \\ (1468.08) \\ \hline \end{gathered}$	$\begin{array}{\|c} 1378.1 \\ (1868.45) \\ \hline \end{array}$	$\begin{array}{\|c} 1279.7 \\ (1735.04) \\ \hline \end{array}$	$\begin{array}{\|c} 984.4 \\ (1334.67) \\ \hline \end{array}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 840.2 \\ (1139.16) \end{gathered}$	$\begin{gathered} 1008.3 \\ (1367.07) \end{gathered}$	$\begin{gathered} 1120.3 \\ (1518.93) \end{gathered}$	$\begin{gathered} 1232.3 \\ (1670.78) \end{gathered}$	$\begin{gathered} 1568.4 \\ (2126.47) \end{gathered}$	$\begin{gathered} 1456.4 \\ (1974.62) \end{gathered}$	$\begin{gathered} 1120.3 \\ (1518.93) \end{gathered}$
	SAE Grade 7	$\begin{gathered} 1191.8 \\ (1615.87) \\ \hline \end{gathered}$	$\begin{gathered} 1430.2 \\ (1939.09) \\ \hline \end{gathered}$	$\begin{gathered} 1589.1 \\ (2154.53) \\ \hline \end{gathered}$	$\begin{gathered} 1748.0 \\ (2369.97) \\ \hline \end{gathered}$	$\begin{gathered} 2224.7 \\ (3016.30) \\ \hline \end{gathered}$	$\begin{gathered} 2065.8 \\ (2800.85) \end{gathered}$	$\begin{gathered} 1589.1 \\ (2154.53) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 1362.9 \\ (1847.85) \end{gathered}$	$\begin{gathered} 1635.5 \\ (2217.44) \end{gathered}$	$\begin{gathered} 1817.2 \\ (2463.80) \end{gathered}$	$\begin{gathered} 1998.9 \\ (2710.15) \end{gathered}$	$\begin{gathered} 2544.1 \\ (3449.34) \end{gathered}$	$\begin{gathered} 2362.3 \\ (3202.85) \end{gathered}$	$\begin{gathered} 1817.2 \\ (2463.80) \end{gathered}$
	ASTM A354 Grade BC	$\begin{gathered} 1192.4 \\ (1616.68) \end{gathered}$	$\begin{gathered} 1430.9 \\ (1940.04) \end{gathered}$	$\begin{gathered} 1589.8 \\ (2155.48) \end{gathered}$	$\begin{gathered} 1748.8 \\ (2371.05) \end{gathered}$	$\begin{gathered} 2225.8 \\ (3017.78) \end{gathered}$	$\begin{array}{\|c} 2066.8 \\ (2802.20) \end{array}$	$\begin{gathered} 1589.8 \\ (2155.48) \end{gathered}$

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	$\begin{array}{\|l} \text { Loctite } \\ 242 \end{array}$	$\begin{array}{\|l\|} \hline \text { Loctite } \\ 271 \end{array}$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 272 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 277 \end{aligned}\right.$	Bare
1-1/4 - 12	SAE Grade 1 ASTM A307	$\begin{gathered} 414.8 \\ (562.40) \end{gathered}$	$\begin{gathered} 497.8 \\ (674.93) \end{gathered}$	$\begin{gathered} 553.1 \\ (749.90) \end{gathered}$	$\begin{gathered} 608.4 \\ (824.88) \end{gathered}$	$\begin{gathered} 774.4 \\ (1049.95) \end{gathered}$	$\begin{gathered} 719.1 \\ (974.97) \end{gathered}$	$\begin{gathered} 553.1 \\ (749.90) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 414.8 \\ (562.40) \\ \hline \end{gathered}$	$\begin{gathered} 497.8 \\ (674.93) \\ \hline \end{gathered}$	$\begin{gathered} 553.1 \\ (749.90) \\ \hline \end{gathered}$	$\begin{gathered} 608.4 \\ (824.88) \\ \hline \end{gathered}$	$\begin{gathered} 774.4 \\ (1049.95) \\ \hline \end{gathered}$	$\begin{gathered} 719.1 \\ (974.97) \\ \hline \end{gathered}$	$\begin{gathered} 553.1 \\ (749.90) \\ \hline \end{gathered}$
	SAE Grade 4	$\begin{gathered} 816.8 \\ (1107.43) \end{gathered}$	$\begin{gathered} 980.2 \\ (1328.97) \end{gathered}$	$\begin{gathered} 1089.1 \\ (1476.62) \end{gathered}$	$\begin{gathered} 1198.0 \\ (1624.27) \end{gathered}$	$\begin{gathered} 1524.7 \\ (2067.22) \end{gathered}$	$\begin{gathered} 1415.8 \\ (1919.57) \end{gathered}$	$\begin{gathered} 1089.1 \\ (1476.62) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 930.5 \\ (1261.60) \end{gathered}$	$\begin{gathered} 1116.6 \\ (1513.90) \end{gathered}$	$\begin{gathered} 1240.6 \\ (1682.03) \end{gathered}$	$\begin{gathered} 1364.7 \\ (1850.29) \\ \hline \end{gathered}$	$\begin{gathered} 1736.9 \\ (2354.92) \end{gathered}$	$\begin{gathered} 1612.8 \\ (2186.66) \\ \hline \end{gathered}$	$\begin{gathered} 1240.6 \\ (1682.03) \end{gathered}$
	SAE Grade 7	$\begin{gathered} 1320.7 \\ (1790.63) \\ \hline \end{gathered}$	$\begin{gathered} 1584.8 \\ (2148.70) \\ \hline \end{gathered}$	$\begin{gathered} 1760.9 \\ (2387.46) \\ \hline \end{gathered}$	$\begin{array}{\|c} 1937.0 \\ (2626.22) \\ \hline \end{array}$	$\begin{array}{\|c} 2465.3 \\ (3342.50) \\ \hline \end{array}$	$\begin{array}{r} 2289.2 \\ (3103.74) \\ \hline \end{array}$	$\begin{gathered} 1760.9 \\ (2387.46) \\ \hline \end{gathered}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 1509.4 \\ (2046.47) \end{gathered}$	$\begin{gathered} 1811.3 \\ (2455.80) \end{gathered}$	$\begin{gathered} 2012.5 \\ (2728.59) \end{gathered}$	$\begin{gathered} 2213.8 \\ (3001.51) \end{gathered}$	$\begin{gathered} 2817.5 \\ (3820.02) \end{gathered}$	$\begin{gathered} 2616.3 \\ (3547.23) \end{gathered}$	$\begin{gathered} 2012.5 \\ (2728.58) \end{gathered}$
	ASTM A354 Grade BC	-	-	-	-	-	-	-

All values in foot pounds and (Newton meters)								
Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	$\mid{ }_{242}^{\text {Loctite }}$	$\left\lvert\, \begin{array}{\|l\|} \text { Loctite } \\ \hline 271 \end{array}\right.$	$\mid{ }_{272}^{\text {Loctite }}$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 277 \end{aligned}\right.$	Bare
1-3/8 • 6	SAE Grade 1	$\begin{gathered} 491.1 \\ (665.84) \\ \hline \end{gathered}$	$\begin{gathered} 589.4 \\ (799.12) \\ \hline \end{gathered}$	$\begin{gathered} 654.8 \\ (887.79) \\ \hline \end{gathered}$	$\begin{gathered} 720.3 \\ (976.60) \\ \hline \end{gathered}$	$\begin{array}{\|c} 916.8 \\ (1243.00) \\ \hline \end{array}$	$\begin{gathered} 851.3 \\ (1154.21) \\ \hline \end{gathered}$	$\begin{gathered} 654.8 \\ (887.80) \\ \hline \end{gathered}$
	SAE Grade 2	$\begin{gathered} 491.1 \\ (665.84) \\ \hline \end{gathered}$	$\begin{gathered} 589.4 \\ (799.12) \\ \hline \end{gathered}$	$\begin{gathered} 654.8 \\ (887.79) \\ \hline \end{gathered}$	$\begin{gathered} 720.3 \\ (976.60) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 916.8 \\ (1243.00) \\ \hline \end{array}$	$\begin{array}{\|c\|} 851.3 \\ (1154.21) \\ \hline \end{array}$	$\begin{gathered} 654.8 \\ (887.80) \\ \hline \end{gathered}$
	SAE Grade 4	$\begin{gathered} 968.1 \\ (1312.57) \end{gathered}$	$\begin{array}{c\|} 1161.7 \\ (1575.06) \end{array}$	$\begin{array}{c\|} 1290.8 \\ (1750.10) \end{array}$	$\begin{gathered} 1419.9 \\ (1925.13) \end{gathered}$	$\begin{gathered} 1807.1 \\ (2450.10) \end{gathered}$	$\begin{gathered} 1678.0 \\ (2275.07) \end{gathered}$	$\begin{gathered} 1290.8 \\ (1750.09) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 1102.1 \\ (1494.25) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1322.6 \\ (1793.20) \\ \hline \end{array}$	$\begin{array}{\|c\|} 1469.5 \\ (1992.38) \\ \hline \end{array}$	$\begin{gathered} 1616.5 \\ (2191.68) \\ \hline \end{gathered}$	$\begin{array}{\|c} 2057.3 \\ (2789.33) \\ \hline \end{array}$	$\begin{array}{\|c\|} 1910.4 \\ (2590.16) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1469.5 \\ (1992.38) \\ \hline \end{array}$
	SAE Grade 7	$\begin{gathered} 1563.6 \\ (2119.96) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1876.4 \\ (2544.06) \\ \hline \end{array}$	$\begin{array}{\|c} 2084.8 \\ (2826.61) \\ \hline \end{array}$	$\begin{gathered} 2293.3 \\ (3109.30) \\ \hline \end{gathered}$	$\begin{array}{\|c} 2918.8 \\ (3957.37) \\ \hline \end{array}$	$\begin{gathered} 2710.3 \\ (3674.68) \\ \hline \end{gathered}$	$\begin{array}{\|c} 2084.8 \\ (2826.61) \\ \hline \end{array}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 1786.6 \\ (2422.30) \end{gathered}$	$\begin{array}{c\|} \hline 2144.0 \\ (2906.88) \end{array}$	$\begin{gathered} 2382.2 \\ (3229.83) \end{gathered}$	$\begin{gathered} 2620.4 \\ (3552.79) \end{gathered}$	$\begin{gathered} 3335.1 \\ (4521.80) \end{gathered}$	$\begin{gathered} 3096.8 \\ (4198.70) \end{gathered}$	$\begin{gathered} 2382.2 \\ (3229.83) \end{gathered}$
	ASTM A354 Grade BC	$\begin{gathered} 1563.6 \\ (2119.96) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1876.4 \\ (2544.06) \\ \hline \end{array}$	$\begin{array}{\|c\|} 2084.8 \\ (2826.61) \end{array}$	$\begin{gathered} 2293.3 \\ (3109.30) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 2918.8 \\ (3957.37) \end{array}$	$\begin{gathered} 2710.3 \\ (3674.68) \\ \hline \end{gathered}$	$\begin{array}{\|c} 2084.8 \\ (2826.61) \end{array}$

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	$\begin{array}{\|l} \text { Loctite } \\ \mathbf{2 4 2} \end{array}$	$\begin{array}{\|l\|} \hline \text { Loctite } \\ 271 \end{array}$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 272 \end{aligned}\right.$	$\left\lvert\, \begin{array}{\|l} \text { Loctite } \\ 277 \end{array}\right.$	Bare
1-3/8 - 12	SAE Grade 1 ASTM A307	$\begin{gathered} 559.5 \\ (758.58) \end{gathered}$	$\begin{gathered} 671.3 \\ (910.16) \end{gathered}$	$\begin{gathered} 745.9 \\ (1011.30) \end{gathered}$	$\begin{gathered} 820.5 \\ (1112.45) \end{gathered}$	$\begin{gathered} 1044.3 \\ (1415.88) \end{gathered}$	$\begin{gathered} 969.7 \\ (1314.74) \end{gathered}$	$\begin{gathered} 745.9 \\ (1011.30) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 559.5 \\ (758.58) \\ \hline \end{gathered}$	$\begin{gathered} 671.3 \\ (910.16) \\ \hline \end{gathered}$	$\begin{gathered} 745.9 \\ (1011.30) \\ \hline \end{gathered}$	$\begin{gathered} 820.5 \\ (1112.45) \end{gathered}$	$\begin{array}{\|c} 1044.3 \\ (1415.88) \end{array}$	$\begin{gathered} 969.7 \\ (1314.74) \end{gathered}$	$\begin{gathered} 745.9 \\ (1011.30) \end{gathered}$
	SAE Grade 4	$\begin{gathered} 1102.1 \\ (1494.25) \end{gathered}$	$\begin{gathered} 1322.6 \\ (1793.21) \end{gathered}$	$\begin{gathered} 1469.5 \\ (1992.38) \end{gathered}$	$\begin{gathered} 1616.5 \\ (2191.68) \end{gathered}$	$\begin{gathered} 2057.3 \\ (2789.33) \end{gathered}$	$\begin{gathered} 1910.4 \\ (2590.16) \end{gathered}$	$\begin{gathered} 1469.5 \\ (1992.38) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 1254.3 \\ (1700.60) \\ \hline \end{gathered}$	$\begin{gathered} 1505.1 \\ (2040.64) \\ \hline \end{gathered}$	$\begin{gathered} 1672.3 \\ (2267.34) \\ \hline \end{gathered}$	$\begin{gathered} 1839.6 \\ (2494.16) \\ \hline \end{gathered}$	$\begin{array}{\|c} 2341.3 \\ (3174.38) \\ \hline \end{array}$	$\begin{array}{\|c\|} 2174.0 \\ (2947.55) \\ \hline \end{array}$	$\begin{array}{\|c} 1672.3 \\ (2267.34) \\ \hline \end{array}$
	SAE Grade 7	$\begin{gathered} 1780.2 \\ (2413.63) \\ \hline \end{gathered}$	$\begin{array}{r} 2136.2 \\ (2896.30) \\ \hline \end{array}$	$\begin{gathered} 2373.6 \\ (3218.17) \\ \hline \end{gathered}$	$\begin{gathered} 2611.0 \\ (3540.04) \\ \hline \end{gathered}$	$\begin{array}{r} 3323.0 \\ (4505.39) \\ \hline \end{array}$	$\begin{array}{\|c} 3085.7 \\ (4183.65) \\ \hline \end{array}$	$\begin{array}{\|c} 2373.6 \\ (3218.17) \\ \hline \end{array}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 2034.1 \\ (2757.87) \end{gathered}$	$\begin{gathered} 2441.0 \\ (3309.56) \end{gathered}$	$\begin{gathered} 2712.2 \\ (3677.25) \end{gathered}$	$\begin{gathered} 2983.4 \\ (4044.95) \end{gathered}$	$\begin{gathered} 3797.1 \\ (5148.18) \end{gathered}$	$\begin{gathered} 3525.8 \\ (4780.35) \end{gathered}$	$\begin{array}{\|c} 2712.2 \\ (3677.25) \end{array}$
	ASTM A354 Grade BC	-	-	-	-	-	-	-

All values in foot pounds and (Newton meters)								
Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	$\mid{ }_{242}^{\text {Loctite }}$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 271 \end{aligned}\right.$	$\mid{ }_{272}^{\text {Loctite }}$	$\mid{ }_{277}^{\text {Loctite }}$	Bare
1-1/2 • 6	SAE Grade 1 ASTM A307	$\begin{gathered} 652.5 \\ (884.67) \\ \hline \end{gathered}$	$\begin{gathered} 783.0 \\ (1061.60) \\ \hline \end{gathered}$	$\begin{gathered} 870.0 \\ (1179.56) \\ \hline \end{gathered}$	$\begin{gathered} 957.0 \\ (1297.52) \\ \hline \end{gathered}$	$\begin{gathered} 1218.0 \\ (1651.39) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 1131.0 \\ (1533.43) \\ \hline \end{array}$	$\begin{array}{\|c} 870.0 \\ (1179.56) \\ \hline \end{array}$
	SAE Grade 2	$\begin{gathered} 652.5 \\ (884.67) \end{gathered}$	$\begin{gathered} 783.0 \\ (1061.60) \end{gathered}$	$\underset{(1179.56)}{870.0}$	$\begin{gathered} 957.0 \\ (1297.52) \end{gathered}$	$\begin{gathered} 1218.0 \\ (1651.39) \end{gathered}$	$\underset{(1533.43)}{1131.0}$	$\stackrel{870.0}{(1179.56)}$
	SAE Grade 4	$\begin{gathered} 1283.9 \\ (1740.74) \\ \hline \end{gathered}$	$\begin{gathered} 1540.7 \\ (2088.91) \end{gathered}$	$\begin{gathered} 1711.9 \\ (2321.03) \end{gathered}$	$\begin{gathered} 1883.1 \\ (2553.14) \end{gathered}$	$\begin{gathered} 2396.6 \\ (3249.36) \end{gathered}$	$\begin{array}{\|c\|} \hline 2225.4 \\ (3017.24) \\ \hline \end{array}$	$\begin{gathered} 1711.9 \\ (2321.03) \end{gathered}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 1462.5 \\ (1982.88) \\ \hline \end{gathered}$	$\begin{gathered} 1755.0 \\ (2379.46) \\ \hline \end{gathered}$	$\begin{array}{\|c} 1950.0 \\ (2643.85) \\ \hline \end{array}$	$\begin{gathered} 2145.0 \\ (2908.23) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2730.0 \\ (3701.39) \\ \hline \end{array}$	$\begin{array}{\|c} 2535.0 \\ (3437.00) \\ \hline \end{array}$	$\begin{array}{\|c} 1950.0 \\ (2643.85) \\ \hline \end{array}$
	SAE Grade 7	$\begin{gathered} 2074.2 \\ (2812.24) \\ \hline \end{gathered}$	$\begin{gathered} 2489.1 \\ (3374.77) \\ \hline \end{gathered}$	$\begin{array}{\|c} 2765.6 \\ (3749.66) \\ \hline \end{array}$	$\begin{array}{\|c} 3042.2 \\ (4124.67) \\ \hline \end{array}$	$\begin{gathered} 3871.9 \\ (5249.60) \\ \hline \end{gathered}$	$\begin{array}{\|c} 3595.3 \\ (4874.58) \\ \hline \end{array}$	$\begin{array}{\|c} 2765.6 \\ (3749.66) \\ \hline \end{array}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 2370.9 \\ (3214.51) \end{gathered}$	$\begin{gathered} 2845.1 \\ (3857.44) \end{gathered}$	$\begin{array}{\|c} 3161.3 \\ (4286.15) \end{array}$	$\begin{gathered} 3477.4 \\ (4714.73) \end{gathered}$	$\begin{aligned} & 4425.8 \\ & (6000.58) \end{aligned}$	$\begin{array}{\|c\|} 4109.6 \\ (5571.88) \end{array}$	$\begin{gathered} 3161.3 \\ (4286.15) \end{gathered}$
	ASTM A354 Grade BC	$\begin{gathered} 2074.9 \\ (2813.20) \\ \hline \end{gathered}$	$\begin{gathered} 2489.9 \\ (3375.85) \\ \hline \end{gathered}$	$\begin{array}{\|c} 2766.6 \\ (3751.01) \end{array}$	$\begin{gathered} 3043.2 \\ (4126.03) \\ \hline \end{gathered}$	$\begin{gathered} 3873.2 \\ (5251.36) \\ \hline \end{gathered}$	$\begin{array}{r} 3596.5 \\ (4876.20) \\ \hline \end{array}$	$\begin{gathered} 2766.6 \\ (3751.01) \\ \hline \end{gathered}$

All values in foot pounds and (Newton meters)

Nominal bolt size	Grade Designation and Standard	Zinc or Cadmium Plated	If instructions call for :					
			Loctite 222 or 262	Loctite	Loctite	$\left\lvert\, \begin{array}{\|l\|l} \text { Loctite } \\ 272 \end{array}\right.$	$\left\lvert\, \begin{aligned} & \text { Loctite } \\ & 277 \end{aligned}\right.$	Bare
1-1/2 •12	SAE Grade 1 ASTM A307	$\begin{gathered} 734.1 \\ (995.30) \end{gathered}$	$\begin{gathered} 880.9 \\ (1194.34) \end{gathered}$	$\begin{gathered} 978.8 \\ (1327.07) \end{gathered}$	$\begin{gathered} 1076.6 \\ (1459.67) \end{gathered}$	$\begin{gathered} 1370.3 \\ (1857.88) \end{gathered}$	$\begin{gathered} 1272.4 \\ (1725.14) \end{gathered}$	$\begin{gathered} 978.8 \\ (1327.07) \end{gathered}$
	SAE Grade 2	$\begin{gathered} 734.1 \\ (995.30) \\ \hline \end{gathered}$	$\begin{gathered} 880.9 \\ (1194.34) \\ \hline \end{gathered}$	$\begin{gathered} 978.8 \\ (1327.07) \\ \hline \end{gathered}$	$\begin{gathered} 1076.6 \\ (1459.67) \\ \hline \end{gathered}$	$\begin{gathered} 1370.3 \\ (1857.88) \end{gathered}$	$\begin{gathered} 1272.4 \\ (1725.14) \\ \hline \end{gathered}$	$\begin{gathered} 978.8 \\ (1327.07) \\ \hline \end{gathered}$
	SAE Grade 4	$\begin{gathered} 1445.6 \\ (1959.97) \end{gathered}$	$\begin{gathered} 1734.8 \\ (2352.07) \end{gathered}$	$\begin{gathered} 1927.5 \\ (2613.34) \end{gathered}$	$\begin{gathered} 2120.3 \\ (2874.33) \end{gathered}$	$\begin{gathered} 2698.5 \\ (3658.68) \end{gathered}$	$\begin{array}{c\|} 2505.8 \\ (3397.41) \end{array}$	$\begin{aligned} & 1927.5 \\ & (2613.34) \end{aligned}$
	SAE Grade 5 ASTM A449	$\begin{gathered} 1645.3 \\ (2230.73) \\ \hline \end{gathered}$	$\begin{array}{\|c} 1974.4 \\ (2676.93) \\ \hline \end{array}$	$\begin{gathered} 2193.8 \\ (2974.40) \\ \hline \end{gathered}$	$\begin{gathered} 2413.1 \\ (3271.73) \\ \hline \end{gathered}$	$\begin{array}{r} 3071.3 \\ (4164.13) \\ \hline \end{array}$	$\begin{gathered} 2851.9 \\ (3866.66) \\ \hline \end{gathered}$	$\begin{array}{\|c} 2193.8 \\ (2974.40) \\ \hline \end{array}$
	SAE Grade 7	$\begin{gathered} 2334.4 \\ (3165.02) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 2801.3 \\ (3798.06) \\ \hline \end{array}$	$\begin{gathered} 3112.5 \\ (4219.99) \\ \hline \end{gathered}$	$\begin{gathered} 3423.8 \\ (4642.05) \\ \hline \end{gathered}$	$\begin{gathered} 4357.5 \\ (5907.98) \\ \hline \end{gathered}$	$\begin{gathered} 4046.3 \\ (5486.05) \\ \hline \end{gathered}$	$\begin{array}{\|} 3112.5 \\ (4219.99) \\ \hline \end{array}$
	SAE Grade 8 ASTM A354 Grade BD	$\begin{gathered} 2667.7 \\ (3616.92) \end{gathered}$	$\begin{array}{\|c} 3201.2 \\ (4340.25) \end{array}$	$\begin{gathered} 3556.9 \\ (4822.51) \end{gathered}$	$\begin{array}{\|c\|} 3912.6 \\ (5304.78) \end{array}$	$\begin{gathered} 4979.6 \\ (6751.44) \end{gathered}$	$\begin{array}{\|l} 4623.9 \\ (6269.17) \end{array}$	$\begin{array}{\|c\|} 3556.9 \\ (4822.51) \end{array}$
	ASTM A354 Grade BC	-	-	-	-	-	-	-

Other Fastener Torque Specifications

All values in foot-pounds and (Newton-meters)

Nominal bolt size	$\begin{gathered} 18-8 \\ \text { Stainless Steel } \end{gathered}$	$\stackrel{316}{\text { Stainless Steel }}$	Brass	$\underset{2024-T 4}{\text { Aluminum }}$
1/4-20	6.3 (8.54)	6.6 (8.95)	5.1 (6.91)	3.8 (5.15)
1/4-28	7.8 (10.57)	8.3 (11.25)	6.4 (8.67)	4.8 (6.50)
5/16-18	11.0 (14.90)	11.5 (15.60)	8.9 (12.06)	6.7 (9.08)
5/16-24	11.8 (16.00)	12.3 (16.67)	9.7 (13.15)	7.2 (9.76)
3/8-16	19.7 (26.71)	20.6 (27.93)	16.0 (21.70)	11.9 (16.13)
3/8-24	21.6 (29.28)	22.6 (30.64)	17.7 (24.00)	13.1 (17.76)
7/16-14	31.3 (42.44)	32.8 (44.47)	26.4 (35.80)	19.0 (25.76)
7/16-20	33.3 (45.15)	34.8 (47.18)	27.3 (37.00)	20.2 (27.38)
1/2-13	43.1 (58.43)	45.2 (61.28)	35.2 (47.72)	26.1 (35.38)
1/2-20	45.1 (61.14)	47.1 (63.86)	36.9 (50.00)	27.3 (37.00)
9/16-12	56.8 (77.00)	59.4 (80.53)	46.5 (63.04)	34.4 (46.64)
9/16-18	62.7 (85.00)	65.6 (88.94)	51.3 (69.55)	38.0 (51.52)
5/8-11	92.5 (125.41)	96.7 (131.10)	75.6 (102.50)	59.6 (80.80)
5/8-18	103.7 (140.60)	108.4 (146.97)	84.7 (114.84)	66.5 (90.16)
3/4-10	127.5 (172.86)	131.8 (178.70)	104.1 (141.14)	81.7 (110.77)
3/4-16	124.2 (168.39)	129.8 (175.98)	101.7 (137.88)	79.8 (108.19)

Other Fastener Torque Specifications

All values in foot-pounds and (Newton-meters)

Nominal bolt size	$\mathbf{1 8} \mathbf{- 8}$ Stainless Steel	$\mathbf{3 1 6}$ Stainless Steel	Brass	Aluminum $\mathbf{2 0 2 4}-\mathbf{T 4}$
$\mathbf{7 / 8 - 9}$	$194.0(263.03)$	$202.5(274.55)$	$158.8(215.30)$	$124.6(168.93)$
$\mathbf{7 / 8 - 1 4}$	$193.2(261.94)$	$201.7(273.47)$	$157.9(214.08)$	$124.2(168.40)$
$\mathbf{1 - 8}$	$286.7(388.71)$	$299.6(406.20)$	$234.6(318.07)$	$183.8(249.20)$
$\mathbf{1 - 1 4}$	$259.2(351.43)$	$270.8(367.16)$	$212.1(287.57)$	$166.3(225.47)$
$\mathbf{1 - 1 / 8} \bullet \mathbf{7}$	$413.0(559.95)$	$432.0(585.71)$	$337.0(456.91)$	$265.0(359.29)$
$\mathbf{1 - 1 / 8} \bullet \mathbf{1 2}$	$390.0(528.77)$	$408.0(553.17)$	$318.0(431.15)$	$251.0(340.31)$
$\mathbf{1 - 1 / 4} \bullet \mathbf{7}$	$523.0(709.09)$	$546.0(740.28)$	$428.0(580.30)$	$336.0(455.55)$
$\mathbf{1 - 1 / 4} \cdot \mathbf{1 2}$	$480.0(650.80)$	$504.0(683.33)$	$394.0(534.19)$	$308.0(417.60)$
$\mathbf{1 - 1 / 2} \bullet \mathbf{6}$	$888.0(1203.97)$	$930.0(1260.91)$	$727.0(985.68)$	$570.0(772.82)$
$\mathbf{1 - 1 / 2} \bullet \mathbf{1 2}$	$703.0(953.14)$	$732.0(992.46)$	$575.0(779.60)$	$450.0(610.12)$

Pellerin Milnor Corporation
P. O. Box 400, Kenner, LA 70063-0400

Litho in U.S.A.

Parts List-General Assembly
Find the correct assembly first, then find the needed components. The item letters (A, B, C, etc.) assigned to assemblies are referred to in the "Used In" column to identify which components belong to an assembly. The item numbers ($1,2,3$, etc.) assigned to components relate the parts list to the illustration.

Section

Shell and Door Assemblies

60" a $72^{\prime \prime}$ WEH - SHELL DODR ASSEMBLY
PELLERIIA HILHGR igRPDRATION

Pellerin Milnor Corporation
Litho in U.S.A.
P. O. Box 400, Kenner, LA 70063-0400

Parts List—Shell Door Assembly
Find the correct assembly first, then find the needed components. The item letters (A, B, C, etc.) assigned to assemblies are referred to in the "Used In " column to identify which components belong to an assembly. The item numbers ($1,2,3$, etc.) assigned to components relate the parts list to the illustration.

Used In	Item	Part Number	Description	Comments
			ASSEMBLIES-	
			none	
			--COMPONENTS-	
all	1	SA 36010	930721*SHELL DOOR ASY 72WE2 RIGHT	
all	2	SA 28122	930721*SHELL DOOR ASY 60WE2 RIGHT	
all	3	60C075	TRUCK BUMPER 2+1/2"OD+3/8"HOLE \#613	
all	4	15G200	01Z HXCPNUT 3/8-16 UNC2A 5/8X1/2	
all	5	15 U 240	FLATWASHER(USS STD) 3/8" ZNC PLT	
all	6	15U255	LOCKWASHER MEDIUM 3/8 ZINCPL	
all	7	15K095	HXCPSCR 3/8-16UNC2AX1 GR5 ZINC/CAD	
all	8	0306068	70358C PLATE=DOOR OPENING 1/72WED	(USED ON SA-36-010)
all	8	0218961	91071C PLATE=DOOR OPENING 60WED	(USED ON SA-28-122)
all	9	02175134	71143A PATCH=SHELL DOOR GASKET	
all	10	02175131	82231B PLATE-LATCH MOUNT RT 60+72WE	
all	11	15K039	HXCAPSCR 1/4-20UNC2AX3/4 GR5 ZNC/CD	
all	12	15U180	LOCKWASHER MEDIUM 1/4 ZINCPL	
all	13	15U185	FLATWASHER(USS STD) 1/4" ZNC PLT	
all	14	15K097	PLOWSCR-\#3 3/8-16NCX1 BLK GR5	
all	15	W3 06063	93072\#* HINGE PLATE WELDMENT-RIGHT	(USED ON SA-36-010)
all	15	W2 18874	93072D* HINGEPLATE WELDMNT-RITE=WED	(USED ON SA-28-122)
all	16	54M015	65408A GREASEFIT 60X36/60X44 1610BL	
all	17	W3 06061	89412\#* SHELLDOOR WELDMENT-RITE=WED	(USED ON SA-36-010)
all	17	W2 18960	93362\#* SHELL DOOR-60"WED-RIGHT	(USED ON SA-28-122)
all	18	15 U 490	FLAWASH 1+1/2X17/32X1/4ZINC	
all	19	15G228	01 Z HXCPNUT 1/2-13 UNC GR-2	
all	20	15U300	LOKWASHER REGULAR 1/2 ZINC PLT	
all	21	0306310	89393B PLATE=LATCH MOUNTING LOWER	(USED ON SA-36-010 ONLY)
all	22	15K084S	HXCAPSCR 3/8-16NCX5/8 SS18-8	
all	23	15U260	LOCKWASHER MEDIUM 3/8 SS18-8	

Pellerin Milnor Corporation
P. O. Box 400, Kenner, LA 70063-0400

Parts List, cont.-SHELL DOOR ASSEMBLY

Parts List, cont.-SHELL DOOR ASSEMBLY				
Used In	Item	Part Number	Description	Comments
all	24			
all	25	53A500	1/4" SLEEVE-DELRIN	
all	26	53A059A	NUT 1/4"COMP.HOLYOKE ANDERSON\#61A-4	
all	27	53A005F	BODY=FEMCONN 1/4X1/8 COMP W\#B66X4	
all	28	SA 10020	90516B* DOORLATCH ASSY-SMALL	
all	29	0306301	87233T COVER=LOWER DOOR LATCH CYL	(USED ON SA-36-010 ONLY)
all	30	SA 28125	93402C*LID ASSY=SOAP CHUTE-GASKETED	
all	31	0218640	65531 Z HOOK=SOAPCHUTE LATCH	
all	32	15P100	072 THDCUT-F PANHD 8-32 X 3/8 SS410	
all	33	0219308	81247C GUARD=60+72WE SOAP CHUTE	
all	36	15N117	RDMACSCR 10-24UNC2X3/8SS18-8	
all	37	24G018N	ROLLED WASHER .194"ID NYLTITE \#10W	
all	38	15G121	HXCAPNUT 10-24UNC2 \#3266BR NKLPLTG2	
all	39	15P010	12 Z PHILPAN TRDCUTSCRTYP10-24X1/2SS	
all	40	AAM36001R	82246J PIPING=SEAL+LATCH RITE 72WED	
all	41	53A031B	BODY-MAL90ELL1/4X1/8COMPPH\#269C-42B	
all	42	60E004TE	$04 Z$ 1/4"OD X.170"ID NYLON TUBING *	
all	43	53A039B	BODY=BRMAL90 5/16X1/8COMP \#B69A-5A	
all	44	53A060A	NUT BRASS 5/16 COMP W\#61X5	
all	45	53A508	5/16" SLEEVE-DELRIN	
all	46	53A509	TUBEINSERT .187"OD	
all	47	53A501	TUBEINSERT .170"OD	
all	48	AAM28001R	77512J PIPING=SEAL+LATCH RITE 60WED	
all	49	0218888	92601A DOORFILLER RUBBER 75FT/COIL*	
all	50	02175267	76119B RUBBER STRIP=CORNERS+DR STEM	
all	51	03 06050B	81441D 72"DORSEAL,G-28-6X124+1/2"	(USED ON SA-36-010)
all	51	02 18889B	83426D 60"DORSEAL,G-28-6X100"	(USED ON SA-28-122)
all	53	54A716	FLANGEBEAR $1^{\prime \prime \prime}$ ID SEAL SCHATZ\#TW-25	
all	54	0218878	73056B PIN-HINGE=SHELL DOOR 60WED	

AIR OPERATED VACUUM PUMP FOR DOOR SEALS

MILNOR Rapid load door seals are now deflated with an air operated vacuum pump. The air operated vacuum pump quickly deflates the door seals when the stop button is pressed. Once the stop button is pressed a timer in the door circuit prevents the doors from being opened for 7-1/2 seconds. This allows the seals time to deflate before the doors are open. The air operated vacuum pump is mounted on the side of the main valve set. The two valves, the relay and the time delay for the vacuum pump is shown on the wiring diagram that was shipped with the machine. The two valves that operate the vacuum pump are labeled deflator enable and deflator supply valve, the relay is aux 3-wire and the time delay is door latch delay.

CYLINDER ASSEMBLY
6036,6044, \& 7244 WE2

P/L CYLINDER ASSEMBLY
 60 \& 70 WE2

Pellerin Milnor Corporation
P. O. Box 400, Kenner, LA 70063-0400

Litho in U.S.A.

Parts List-P/L CYLINDER ASSEMBLY

Find the correct assembly first, then find the needed components. The item letters (A, B, C, etc.) assigned to assemblies are referred to in the "Used In " column to identify which components belong to an assembly. The item numbers (1, 2, 3, etc.) assigned to components relate the parts list to the illustration.

Parts List, cont.-P/L CYLINDER ASSEMBLY

Parts List, cont.-P/L CYLINDER ASSEMBLY				
Used In	Item	Part Number	Description	Comments
all all	$\begin{aligned} & 14 \\ & 15 \\ & 15 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 19 \\ & 20 \\ & 21 \\ & 21 \\ & 25 \\ & 25 \\ & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 30 \\ & 31 \\ & 32 \end{aligned}$	SA 36001 SA 28113 SA 36002 SA 28114 02 18899C 02 18901A 0218857 0218859 0306174 0219207 0306177 15K106E 15A015 X3 06166 0306167 15A015 X3 06150 0306151 X3 06152 0306156 0218869 15K042K 0306172 03 06173A 15G170	93397Y* CYLDOR LORT 72WE2+ MAX-REIF 93386D* CYLDOR UPRT 60WE2+ MIN-REIF 93461Y* CYLDOR UPRT 72WE2+ MAX-REIF 96172D* CYLDOR ASY,SMALL =60+72WE2 78202B FAIRING=REAR SIDES 81442\# FAIRING TOP 91091B TAPSTRIP-CYL DOOR 2/60WEDU 86216A TAPSTRIP=SMALL CYL DOOR 77426A KEEPER=DOORLATCH REINFORCE 90372D COUNTERWEIGHT=CYL 60WE2 81333\# COUNTERWEIGHT=CYL 72WE2 BUTSOKCAPSCR 3/8-16NCX1+1/2 SS18-8 67381A CARRSCR 3/8-16X1+1/4 SPECIAL 89207A KEEPER=CYL DOOR LATCH 88161L COVER-LARGE CYLDOOR KEEPER 67381A CARRSCR 3/8-16X1+1/4 SPECIAL 72195B PLUNGER=LARGE CYLDOOR(CAST) 94222A LATCHBODY-LARGE=CYLDOOR 87346A PLATE = LARGE DOORLATCH 70025A SPRING=LARGE CYLDOOR LATCH 78041B SPACER-LATCH PULL BND@PRNT BUTSOKCAPSCR 1/4-20UNCX1+1/4 SS18-8 77422A SHIM=DOOR LATCH-18GA 77422A SHIM=DOOR LATCH-11GA HEXNUT 1/4-20UNC2 SS18-8	(7244 WE2) (6036\&6044 WE2) (7244 WE2) (6036\&6044 WE2) (7244 WE2) (6036\&6044 WE2) (7244 WE2) (6036\&6044 WE2) (7244 WE2)

Section

Drive Assemblies

DRIVE BASE COMPONENTS ON HYDRO-CUSHION ${ }^{\circledR}$ MACHINES

General Description of Drive Mechanism

Major drive train components of the drive base include the following:

1. Drive motors: Wash, Drain, E-1 (low extract), E-2 (high extract) and Autospot. (The E1 motor is optional on 42 " machines and standard on larger models except for 64 " machines, which use one 2 -speed extract motor. Autospot is optional on divided cylinder machines and not applicable to open pocket machines.)
2. Belts and pulleys
3. Jackshaft (The jackshaft assembly is used on $52^{\prime \prime}, 60^{\prime \prime}, 64^{\prime \prime}$ and $72^{\prime \prime}$ machines only. On $42^{\prime \prime}$ and $48^{\prime \prime}$ machines, the E2 (high extract) motor also serves as the jackshaft.)
4. Clutch and drum assembly
5. Gear reducer
6. Brake assembly (The brake is located on the drive base on $42^{\prime \prime}$ and $48^{\prime \prime}$ machines only. On larger models, it is located elsewhere.)
7. Centrifugal switch

Concept of Drive Train Operation-See FIGURE 1. During washing and inching, the cylinder is driven by the wash motor through the gear reducer and the clutch, while the drain motor and the extract motors merely coast. As soon as the drain valve opens, the wash motor is shut off and coasts with the extract motors, while the drain motor drives the cylinder through the reducer and clutch. During extraction, both the wash and drain motors are shut off, the clutch disengages, and the extract motor drives the cylinder through the jackshaft pulley and main "V" belt drive. At the expiration of extract, the extract motor shuts off, the brake is applied, and either the drain or wash motor (depending upon whether the drain valve is open or closed) starts and runs idle while the brake decelerates the machine. When the machine has slowed down sufficiently to actuate the centrifugal switch, the brake is automatically released, and the clutch engages, returning the machine to wash or drain speed.

Advance Preparations for Drive Assembly Maintenance

The drive train on your Milnor ${ }^{\circledR}$ machine has been designed to give long, trouble-free service under continuous use. Strict adherence to the lubrication schedule, proper belt tensioning, and the normal good practice of inspecting your machine regularly for possible problems is the best way of prolonging service life.

FIGURE 1 (MSSMA407BE)

Drive Base: 42" and 48" Machines

 (Shows Concept of Operation For All Hydro-cushion ${ }^{\circledR}$ Washers and Dye-extractors ${ }^{\circledR}$)Eventually, however, drive train components may require replacement. If this becomes necessary, the following preparations and precautions will help to minimize down time:

1. Inspect belts regularly and purchase a replacement set for future use, before those on your machine become severely worn. This is especially important for the main drive belts. Purchase a belt tension tester (see "VBELT TENSION ADJUSTMENTS") and familiarize yourself with its use. It is also recommended to stock an extra clutch tire.
2. Although any motor can fail with no prior warning, two signs of potential failure are 1) motor running slower than normal and 2) motor emitting a loud or unusual noise. If either condition is detected, immediately check for voltage fluctuations in your electrical supply. Fluctuations greater than 10% below or 10% above those specified may cause the above symptoms and are extremely detrimental to the motor. If voltage fluctuations are not detected, yet the symptom persists, then the motor will probably soon fail. A slow running motor may indicate a bad rotor; whereas a loud or unusual noise likely indicates worn bearings. If possible, make immediate repairs to avert complete failure. If this is not possible, make sure replacement parts will be on hand when needed. Note however, that if a motor is allowed to fail, this is almost sure to require a new or completely rebuilt motor.
3. Familiarize yourself with the various components of the drive base and with the procedures herein.

Motor, Belt, and Pulley Replacement

Part numbers for belts, pulleys, and related components may be found on the Drive Chart and/or Drive Assembly drawings for your machine. When ordering motors and motor parts from the Milnor ${ }^{(8}$ factory, provide the machine model and serial number and the motor function (i.e., wash, drain, E1 (low extract), E2 (high extract) or Autospot). Replacement rotors and bearings are available from Milnor ${ }^{\circledR}$ for some motors.

Whenever a motor, belt, or pulley is replaced, the corresponding pulleys must be precisely aligned when reinstalled, the taper lock bushing properly tightened and the belt(s), properly tensioned. (See "V-BELT TENSION ADJUSTMENTS" for tensioning procedure using a tension testing device available from the Milnor ${ }^{\circledR}$ factory.)

All pulleys (used for power transmission) on Milnor ${ }^{\circledR}$ Hydro-cushion ${ }^{\circledR}$ machines use taper lock bushings. This feature greatly facilitates the removal and/or adjustment of these pulleys. Components of the taperlock bushing are identified below.

To Remove a Pulley

1. See FIGURE 2.
2. Remove the belts. Release belt tension by adjusting the position of the component to which the pulley is attached with the jack screws, until the belts easily slip off of the sheave. Do not force belts off by using a pry bar or rolling the sheave.
3. Loosen all three bushing cap screws.
4. Put two cap screws into the push-off holes in the bushing flange and tighten alternately until the sheave has loosened from the bushing (see FIGURE 2).
5. Remove sheave and bushing from the shaft.

To Maximize Belt Life

1. Never mix new and used belts on a drive.

FIGURE 2 (MSSMA407BE)
Typical Taperlock Bushing Construction
2. Never mix belts from more than one manufacturer.
3. Always replace with the right type of belt and observe V-belt matching limits.
4. Inspect belt grooves in sheaves and replace sheave for any of the following reasons:
a. Worn groove side walls. Walls should be straight (not curved inward) when viewed in cross section.
b. Chipped or broken side walls.
c. Shiny groove bottoms (indicating that belt is bottoming out).

To Replace Pulleys and Belt(s)

1. Clean the tapered bore of the sheave, mating surface of the bushing, bore of the bushing, and the shaft until free of any foreign substance (including paint).

NOTE: Do not use lubricants, "Locktite," or other adhesives on these mating surfaces.
2. Assemble the key in the shaft keyway checking to ensure the key is a snug fit, neither too tight nor too loose.
3. Loosely assemble the sheave and bushing on the shaft in the approximate location for proper belt alignment, allowing for take-up movement of the sheave. Make certain Grade 5 bolts, identified by the head marking shown in FIGURE 3, were supplied.
4. Carefully tighten the cap screws alternately and progressively until the taper is seated (approximately the "Initial Torque" as shown in the "Taperlock Bushing Bolt Torque Specs" elsewhere herein). Rotate the sheave to detect any wobble or runout (see FIGURE 2 next page).
5. Install the belts onto the sheaves (driving and driven) and with the slack of each belt on the same side, adjust

Check for Wobble

FIGURE 3 (MSSMA407BE)
Test for Pulley Alignment
(Straight edge must touch points A, B, C, and D)
the motor position with the motor mount (or other component) jack screws until all slack is taken up. Do not force belts onto the sheaves by using a pry bar or rolling the sheaves.
6. Check for sheave alignment as shown in FIGURES 3. The sheaves must be aligned within $1 / 64$ " per foot between shaft centerlines and in no case greater than $1 / 8^{\prime \prime}$. Readjust the sheave position as required to correct alignment.
7. Continue to alternately and progressively tighten cap screws to the "Final Torque" shown in the table. Use a torque wrench for the final torque check. When properly mounted, the gap between the bushing flange should not be less than $.078^{\prime \prime}$ nor more than .130 ".
8. Check for proper belt tension and adjust if required. See "V-BELT TENSION ADJUSTMENTS" (see Table of Contents).

Taperlock Bushing Bolt Torque Specifications

Size Code (Stamped on bushing)	Bolt Size (All National Coarse Thread)	Initial torque (in lb.)	Final torque (in lb.)
G	$1 / 4 \times 5 / 8$	48	115
H	$1 / 4 \times 3 / 4$	48	115
P_{1}	$5 / 16 \times 1$	96	240
P_{2}	$5 / 16 \times 1$	96	240
Q_{1}	$3 / 8 \times 11 / 4$	174	430
Q_{2}	$3 / 8 \times 11 / 4$	174	430
R_{1}	$3 / 8 \times 13 / 4$	174	430
R_{2}	$3 / 8 \times 13 / 4$	174	430
$\mathrm{~S}_{1}$	$1 / 2 \times 21 / 4$	420	1080
$\mathrm{~S}_{2}$	$1 / 2 \times 21 / 4$	420	1080
SH	$1 / 4 \times 13 / 8$	54	115
SDS	$1 / 4 \times 13 / 8$	54	115
SD	$5 / 16 \times 2$	54	115
SK	$3 / 8 \times 2$	90	240
SF	$3 / 4 \times 63 / 4$	180	430
M		1350	3700

Gear Reducer and Clutch

For gear reducer part numbers, see Gear Reducer Assembly and Reducer Air Seal drawings for your machine. For clutch components, see Drive Assembly drawing for your machine.

Concept of Clutch Operation-The clutch (see cross section view, next page) consists of a tubeless tire mounted to the gear reducer output shaft and a drum similar to an automobile brake drum, mounted to the jackshaft (or E2 motor shaft), within which the tire nests. When the tire is automatically inflated on command from the machine controls, it grips the inside of the drum, thus engaging the gear reducer and the jackshaft. When air pressure is released, the tire deflates, thus disengaging the gear reducer and jackshaft and allowing the machine to run in extract without overspeeding the reducer, wash motor or drain motor.

Air controlled by a solenoid valve is admitted to the clutch through a hole in the center of the gear reducer shaft. The air is prevented from entering the reducer housing itself by a mechanical end face seal located inside the air inlet on the gear reducer. The reducer is also fitted with a vented fill plug to prevent build up of air pressure in the housing, should the mechanical seal fail. A quick release valve permits instant clutch release by providing a large area "short circuit" exhaust connection near the clutch. The quick release valve is necessary for the clutch used on Milnor ${ }^{\circledR}$ washer-extractors, and is furnished as original equipment. The air supplied to the clutch must be free of oil and moisture.

A CAUTION A

If the machine makes a loud screeching sound like skidding automobile tires during deceleration from extract speed to wash speed, turn the Master switch to off immediately and refer to the troubleshooting procedures.

Alignment Requirements-The gear reducer must be positioned on the drive base such that its output shaft is on the same axis as the jackshaft (or E2 motor shaft), as shown in FIGURE 4. Otherwise, the clutch tire will not properly engage the drum. Slight misalignment reduces the service life of the clutch tire and perhaps other components. Severe misalignment may result in serious damage to the jackshaft, clutch, or gear reducer (i.e., broken shaft).

To Remove the Gear Reducer and Clutch

1. Remove all belts from the gear reducer and clutch drum pulleys as previously explained.
2. Remove the air line to the quick release valve located on the reducer air seal.
3. Remove any other components which may be mounted to the gear reducer mounting bracket, such as Autospot motor, brake assembly, etc.
4. On all machines except $64^{\prime \prime}$ models, shims are used under the gear reducer mounting bracket, to align the gear reducer.

FIGURE 4 (MSSMA407BE) Cross Section View of Clutch

It is essential when removing the gear reducer, to record the positions of these shims so that they may be replaced in the exact same position later. Bearing this in mind, carefully remove the gear reducer mounting bracket (with the reducer attached) from the drive base. Note that the clutch tire, attached to the reducer output shaft, must be allowed to slip out of the clutch drum as the reducer is removed.

4a. On 64" machine models only (i.e., 64042BTN), check and adjust the jacking bolts on the gear reducer support bracket under the input shaft side of the reducer to be sure they are just touching the drive base. Leave the angle bracket between the reducer mounting bracket and the drive base side members firmly attached to the drive base. Remove only the two bolts and one dowel pin on each side of the reducer mounting bracket that attaches it to the angle brackets.
5. The gear reducer should not be unbolted from the mounting bracket unless absolutely necessary (i.e., replacing an old gear reducer with a new one); since this will complicate clutch alignment. The clutch tire may be removed from the gear reducer by removing the retaining locknut, as well as the connection where the short length of copper tubing meets the reducer shaft, then gently working the assembly off of the tapered shaft with a rubber mallet or pulling fixture. The clutch drum may also be removed from the jackshaft, if required, by removing the retaining locknut and pulling the drum off with a pulling fixture. Do not attempt to drive the drum off with a hammer or mallet.
6. In addition to any other required maintenance, inspect the various belts and the clutch tire. These components should be replaced at this time if they show appreciable wear. It is highly recommended to replace the belts that drive the clutch drum pulley, unless these are brand new.

To Replace the Gear Reducer and Clutch—Reassemble all components in reverse order of their removal. Remember that all components such as motors, brake, etc. must be properly adjusted, using the alignment procedures described herein.

When the gear reducer and mounting brackets are replaced on the drive base, with the shims replaced in their original positions, this should achieve rough alignment of the reducer. If, however, the gear reducer was removed from its mounting brackets, or the jackshaft was removed from its housing, the reducer may be out of rough alignment.

To align the gear reducer and clutch:

1. Observe the position of the clutch tire within the drum and check for clearance between the tire and drum all around, with a feeler gauge. Determine that the tire is roughly centered within the drum. If it is, skip to step 3. If not, proceed to step 2 a or 2 b .

2a. For all machines except 64' models, add or remove shims from between the gear reducer mounting brackets and drive base as required to roughly position the clutch tire within the drum in accordance with the "CLUTCH ALIGNMENT REQUIREMENTS" drawing.

2b. On 64" machine models only (i.e., 64042BTN), remove the two bolts and one dowel pin from each side of the gear reducer mounting bracket and using C-clamps to secure the mounting bracket to the angle brackets, adjust the position of the gear reducer to achieve rough alignment in accordance with the "CLUTCH ALIGNMENT REQUIREMENTS" drawing. If the existing bolt holes are now misaligned, either enlarge the existing holes or drill new holes as required and reinstall the four bolts. Mark any new bolt holes as being the correct ones. Do not reinstall the dowel pins.
3. Temporarily disconnect the internal air line to the gear reducer and connect an external, valve-controlled air line to the reducer, but do not inflate the tire yet.
4. Loosen but do not remove the bolts that attach the gear reducer mounting brackets to the drive base. (On 64 " machine models, check to be sure the jacking bolts under the input shaft side of the reducer are resting on the drive base then loosen the bolts and remove the dowel pins if they were reinstalled.)
5. Inflate the clutch tire to cause the gear reducer to position itself with the clutch precisely centered. (It should move very little, if at all.)

6a. On all machines except 64" models, add or remove shims as required to firmly seat the reducer mounting brackets on the drive base and tighten down the mounting bolts.

6b. On 64' machine models only (i.e., 64042BTN), tighten down the mounting bolts. If the dowel pin holes are aligned, reinstall the pins. If the holes are not aligned, drill new holes, install the dowel pins, and mark the new holes as being the correct ones.
7. Replace the internal air line to the gear reducer.
8. Energize power to the machine and run in wash, while observing for any evidence of gear reducer misalignment such as 1) wobbling of the gear reducer or related components, or 2) any apparent difficulty of the clutch tire to engage the drum (i.e., an extended squealing sound).
9. If any of the above symptoms are observed, repeat the alignment procedures.

Jackshaft Replacement: 52", 60", 64", and 72" Machines

Jackshaft components may be found in the JACKSHAFT BEARING ASSEMBLY drawing for your machine. Replacement jackshafts are supplied, preassembled and are installed as a one-piece unit. To replace the jackshaft, proceed as follows:

1. Remove belts, gear reducer, and clutch drum exactly as previously explained.
2. Lower the drive base using the drive base jacking bolts. Remove the main drive belts and the jackshaft pulley.
3. Remove the grease fittings (or grease lines as appropriate).
4. To remove the jackshaft bearing assembly from its housing, it is convenient to remove the mounting plates from both ends of the housing. Shims may have been installed between the mounting plates and the housing to align the jackshaft within the housing. It is essential to record the positions of these shims, so that they may be replaced in the exact same position later.

On some models, the front mounting plate differs from the rear plate. Therefore, it is also necessary to identify the mounting plates as front or rear, so that they will be returned to the same positions. Remove each mounting plate by first unbolting the jackshaft from the plate then unbolting the plate from the housing.
5. Remove the jackshaft bearing assembly from the housing.
6. In addition to any other required maintenance, inspect all belts that were removed and replace with new belts, if they show appreciable wear.

To replace the jackshaft, reassemble all components in reverse order of their removal. Make certain that the jackshaft is properly oriented with the clutch end of the shaft to the front of the machine and that all shims are returned to their original positions. Install all jackshaft mounting bolts hand tight. Lift each end of the jackshaft with a pry bar (one end at a time) then tighten the bolts on that end, so that the jackshaft will sit as high as possible in the housing. This will provide for greater clearance between the clutch pulley and the drive base for the belts and easier alignment of the jackshaft. When tightening the bolts, tighten first the bolts that secure the jackshaft to the mounting plate, then those that secure the mounting plate to the housing. Remember that all components such as motors, gear reducers, brakes, etc., must be properly adjusted, using the alignment procedures explained herein.

Brake Assembly

Concept of Operation-On 42" and $48^{\prime \prime}$ Hydro-cushion ${ }^{\circledR}$ machines, the brake is located on the drive base. (The clutch drum is also the brake drum.) On 60" and $72^{\prime \prime}$ Staph-guard ${ }^{\circledR}$ machines, the brake is located on the idlershaft. On all other 52", 60", 64", and 72" machines, it is located on the cylinder shaft (thus, the main drive pulley and brake drum are combined). Machines covered by these instructions use spring loaded air cylinders to hold the brake band against the drum. Open-pocket machines use only one level of braking ("first brake") and divided cylinder machines (WE's and SG's) use two levels ("first" and "second" brake). The "first" brake is normally on, and braking pressure is supplied by the action of the springs inside the brake air cylinder. The "first" brake is released by applying air to the top of the air cylinder to counteract the springs. This occurs whenever the cylinder rotates under power. On divided cylinder machines, the "second" brake which is on whenever the cylinder is at rest with the door open, supplements the "first" brake with air pressure applied to the back of the air cylinder.

Brake Assembly Maintenance-For identification of brake components and specific adjustment procedures refer to the Brake Assembly, Drive Assembly and/or Brake Air Cylinder drawings for your machine. Specific adjustment procedures are also found on the Brake Assembly drawing for your machine.

The brake may be readily adjusted to compensate for wear by adjusting the nuts on the air cylinder stem. If brake components must be removed or repaired, it is essential to adjust the brake upon replacement in accordance with the Brake Assembly drawing.

NOTE: For any adjustment procedure requiring air pressure to the brake, do not attempt to perform this procedure by energizing the washer as it is not possible to release the "first" brake without the cylinder rotating under power.

To release the "first" brake without energizing the washer:

1. Disconnect the internal air line to the air cylinder. (This is the only air line to the air cylinder on open-pocket machines and the air line closest to the air cylinder stem on divided cylinder machines.)
2. Temporarily connect a direct air line to the air cylinder where the internal line was removed and apply air to release the brake.
3. On divided cylinder machines, make sure the doors are closed (to release the "second" brake).

Centrifugal Switch

Concept of Operation-After an extraction, the centrifugal switch will signal the Miltrol as soon as the washer cylinder has slowed sufficiently to permit the wash speed clutch to re-engage. Also, until this low speed has been attained, the Miltrol circuits prevent the opening of the shell door, thus providing safety interlocking.

This centrifugal switch assembly consists of three mercury tube switches wired in parallel, and connected to two copper rings. The shaft of the centrifugal switch is driven by the extract motor shaft and rotates at the same speed as the extract motor. At a predetermined speed, centrifugal force will cause the mercury switches to open the circuit. At lower speeds, there is always at least one switch closed, thus maintaining the circuit continuity. Two spring loaded carbon brushes, riding on the copper contact rings, transmit this electrical signal to the Miltrol.

This electrical signal is used to energize the speed relay at the expiration of extraction, when the predetermined reclutching speed has been reached. The combined operation of the extract relay and the speed relay in the Miltrol perform all the functions of operating the brake, clutch, and extract motors incidental to the automatic entrance into extraction, and subsequent return to wash speed.

Centrifugal Switch Maintenance-See Centrifugal Switch Assembly for your machine for identification of switch components.

The centrifugal switch is very simple, yet of vital importance. Failure of one of the mercury switches to make contact, an irregular contact between the brushes and the contact rings, a loose connection in the wiring, or any other condition that would cause an open circuit will prevent the clutch from engaging, in which case the machine will not operate after having braked down from extract speed.

The carbon brushes should be inspected occasionally, and replaced when worn. The copper contact rings may be cleaned with fine emery when needed. (Do not scratch the surface of the contact rings.)

A WARNINGA

A short circuit or ground in the centrifugal switch or its associated wiring will cause the wash speed clutch to engage in high speed rotation. This condition would be identified by an extremely loud screeching sound as soon as the machine stops extracting. The sound would be similar to skidding auto tires. Such a malfunction is very dangerous and must be corrected at once before further operation.

A CAUTION A

Turn off power at main wall switch before entering centrifugal switch. This assembly carries high voltage, and remains energized when Miltrol master switch is off.

Over-lubrication of extract motor bearings will force grease into centrifugal switch housing and will cause the centrifugal switch to malfunction.

Jackshaft Bearing Assembly

 52, 60, 64, 72Pellerin Milnor Corporation
P. O. Box 400, Kenner, LA 70063-0400

Parts List-Jackshaft Bearing Assembly
Find the correct assembly first, then find the needed components. The item letters (A, B, C, etc.) assigned to assemblies are referred to in the "Used In " column to identify which components belong to an assembly. The item numbers ($1,2,3$, etc.) assigned to components relate the parts list to the illustration.

Parts List, cont.-Jackshaft Bearing Assembly

Pellerin Milnor Corporation
P. O. Box 400, Kenner, LA 70063-0400

Parts List-Autospot Drive Assembly

Find the correct assembly first, then find the needed components. The item letters (A, B, C, etc.) assigned to assemblies are referred to in the "Used In" column to identify which components belong to an assembly. The item numbers ($1,2,3$, etc.) assigned to components relate the parts list to the illustration.

Air Operated Autospot Assembly
60044WP2/WP3 and 72044WP2/WP3
MIIILIDIDi Pellerin Milnor Corporation
P. O. Box 400, Kenner, LA $70063-0400$

										BMP701195/2000242V (Sheet 2 of 2)
MILIDR	Pellerin Milnor Corporation P. O. Box 400, Kenner, LA 70063-0400									Litho in U.S.A.
Parts List-Centrifugal Switch Assembly Find the correct assembly first, then find the reeded components. The item letters (A, B, C, etc.) assigned to assemblies are refered to in the Used Inc coumn toidentify which components belong to an assembly. The item numbers					Parts List, cont.-Centrifugal Switch Assembly					
					Used In	Item	Part Number	Description		Comments
					all	14	0215582	COVER=CENTSW-CADSTL		
Used In	Item	Part Number	Description	Comments	$\begin{aligned} & \text { N-R-R } \\ & \text { all } \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 0301147 \\ \text { A33 } 11000 \end{array}$	HOUSING FOR CENTRIFUGAL SWITCH 75675B\$ HOUSE+BKT+SHAF=CENSW CWM	00S	
			ASSEMBLIES			15	A03 01300	75491C*HOUSE+BKT+SHAFT=CENSW 42+52U		
	N	EDC14003	92000Z*CENTSW + MTG BRKT 3621/26F	3621Q'S MANUFACTURED AFTER		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	A03 01300A A03 11000	75491\#* HOUSE+BKT+SHAF=CENSW 42DYA 82506T*CENTSWITCH=HOUSING+BRKT 42Q		
				JAN. 6,1993		15	ADC14001A	${ }^{93381 C^{*} C-S W I T C H=M N T ~ B R K T+H O U S I N G ~}$		
	P	EDC14002	90000Z CENTSW+MTG BRKT 36/42QG/J/P	3621/26+4226Q4'S,		15 15	ADC14801	86		
				Q6'S		15	A13 02700A	83246\# CENSW HSG+BRKT ASSY 2SPD WAS		
	Q	G10 05000B	84412\# CENTSW ASSY=FRAME NO-PLATE	3621 CPE,BWP,NSP	T-Z only	16	17B059w	RETAIN RING-ROTOR CLIP\# SH-62-ST		
				4226DA1, 64040/64050E6N 64046E6N/J6N/D6N	T-Z only	17	A03 01400	71103B SHAFT ASSY=CENTSWITCH		
	R	G03 04500A	84412C CENTSWITCH=MOTOR MT NO-PLATE	6044,6442,6446,7244	T-Z only	18	0301147	HOUSING FOR CENTRIFUGAL SWITCH		
	T	SAE03 088	792571 ASSY=CENSW + MOUNTBKT 42	42031,42044,48032,48036	T-Z only	19	17B059W	RETAIN RING-ROTOR CLIP\# SH-62-ST		
	u	SAE03 088A	83417J ASSY=CENSW + MOUNTBKT 42DYA	5238 DYE	T	20	0215359	CENTSW MOUNTBRACKET		
	v	ADC11001	84122D ASSY=CENSW + MOUNTBKT4226QH	4226	v	20	0211452	76154C BRKT=CENT 94222D CENTRUGAL SWITCH BRKT-42Q		
	w	ADC14001	90351C CENT SWITCH ASSY 3621F8P	3621F8P	W	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 0214609 \\ & 0214836 \end{aligned}$	93381D+BRKT=CENTRIF SWITCH 3621F8P 89391C CENT=SW MTG BRKT		
	x	EDC14801	86252C ASSY=CENSW+MTGBRKT RWP	3621/26,4226RWP/SYS	Y	20	0213111	77481C BRKT=CENT-SWITCH MT BND@PRNT		
						20	0348170	83246C BRACKET=CENT.SW.MT.2SP WASH		
	Y	SAE13 001	832461 ASSY=CENSW + MOUNTBKT SWE	3626SWE	all	21	15N117	RDMACSCR 10-24UNC2X3/8SS18-8		
	z	SAE13 001A	83417J CENTRIFUGAL SW ASSY 42QHE	4226,4832,4836	all	22	15 U 130	FLAWAS\#10.031X7/160DX. 2031 L ZINCPL		
			ONENTS		all	23	15 U 150	LOCKWASHER MEDIUM \#10 ZINCPL		
all	1	09X100	CARBON BRUSH 3/16"SQ=CENSW		all	24	15G201	$01 Z$ HXLOKNUT 3/8-16 NYLSS TYPE NE		
all	2	ESC0001	82281B* CENT SWITCH BRUSHOLDER ASSY							
all	3	15 G 071	MACHSCRLOKNUT 6-32 NM SER ZINC							
all	4	$031 \mathrm{~F} 2 \times 3$	85046B INSUL.AUTOSPOT/CENTRIFUGL.SW							
all	5	60E005E	TUBING VINYL 3/81DX.025"W \#HT105C *							
all	6	12 P 015 C	CABLECLAMP 5/16-1/2							
all	7	15G070	HXMACHSCRNUT 6-32UNC2B ZINC GR2							
all	8	15N045	RDMACHSCR 6-32UNC2AX3/8 ZINC GR2							
all	9	15 U 100	LOKWASHER MEDIUM \#6 ZINCPL							
all	10	15P010	$12 Z$ PHILPAN TRDCUTSCRTYP10-24X1/2SS							
all	11	SAE03 012B	83407\#*SLPRING+CENT SW.ASSY(LORES)							
all	12	15 U 42	FLTWASH .255/.2601DX.750DX. 125 S S							
all	13	15K036	$05 Z$ SKSELLOKCP SCR 1/4-20X5/8							

After an extraction, the centrifugal switch will signal the MILTROL as soon as the washer-cylinder has slowed sufficiently to permit the wash speed clutch to reengage. Also, until this low speed has been attained, the MILTROL circuits prevent the opening of the shell door - thus providing safety interlocking.

This centrifugal switch assembly consists of three mercury tube switches wired in parallel, and connected to two copper rings. This entire assembly is mounted on a rear extension of the extractor motor shaft, and rotates at the same speed as the extract motor. At a predetermined speed, centrifugal force will cause the mercury switches to open the circuit. At lower speeds, there is always at least one switch closed, thus maintaining the circuit continuity. Two spring loaded carbon brushes, riding on the copper contact rings, transmit this electrical signal to the MILTROL.

This electrical signal is used to energize the speed relay at the expiration of extraction - when the predetermined reclutching speed has been reached. The combined operation of the extract relay and the speed relay in the MILTROL perform all the functions of operating the brake, clutch and extractor motors incidental to the automatic entrance into extraction, and subsequent return to wash speed.

The centrifugal switch is very simple - yet of VITAL importance. Failure of one of the mercury switches to make contact, or an irregular contact between the brushes and the contact rings, or a loose connection in the wiring, or any other condition that would cause an open circuit will prevent the clutch from engaging - in which case the machine will not operate after having braked down from extraction speed.

WARNING: A SHORT CIRCUIT OR GROUND IN THE CENTRIFUGAL SWITCH OR ITS ASSOCIATED WIRING WILL CAUSE THE WASH SPEED CLUTCH TO ENGAGE IN HIGH SPEED ROTATION. THIS CONDITION WOULD BE IDENTIFIED BY AN EXTREMELY LOUD SCREECHING SOUND AS SOON AS THE MACHINE STOPS EXTRACTING. THE SOUND WOULD BE SIMILAR TO SKIDOING AUTO TIRES. SUCH A MALFUNCTION is very dangerous and must be corrected at once - before further OPERATION.

CAUTION: Over-lubrication of extractor motor bearings will force grease into centrifugal switch housing and will cause centrifugal switch to malfunction.

The carbon brushes should be inspected occasionally, and replaced when worn. The copper contact rings may be cleaned with fine emery when needed. (Do not scratch the surface of the contact rings.)

WARNING: TURN "OFF"' POWER AT MAIN WALL SWITCH BEFORE ENTERING CENTRIFUGAL SWITCH. THIS ASSEMBLY CARRIES HIGH VOLTAGE, AND REMAINS ENERGIZED WHEN MILTROL MASTER SWITCH IS "OFF".

V-BELT TENSION ADJUSTMENTS FOR 48", 52", 60" AND 72" WASHER-EXTRACTORS

This instruction is to be used for adjusting the belt tension on the following machine models:

48032BHE	48032BTG	48032BTH	48036QHE	48036 QTG	48036 QTH		
52038WE1	52038WTF	52038WTB	52038WTG	52038WTH			
60036WE2	60036WE3	60036SG2	60036SG3	60044WE2	60044WE3	60044SG2	60044SG3
72044SG2	72044SG3	72044WE2	72044WE3	72044WTB	72044WTG	72044WTH	

A belt tension testing device (Milnor ${ }^{\circledR}$ part number 30T001) and a straight edge are required when tensioning unbanded belts.

Tension Settings-Unbanded Belts

Set the o-rings on the tension testing device (see FIGURE 1) as follows:

1. Move the upper o-ring to the topmost position, resting against the bottom edge of the cap.
2. Find the proper belt deflection setting (by machine model and belt function) in the appropriate table below.
3. Move the lower o-ring on the tension tester to this deflection setting on the inches scale.

NOTE 1: The tension testing device is marked on one side in inches and pounds and on the other side in centimeters and kilograms. All values in the tables are in inches (in.) and pounds (lbs.).

NOTE 2: The instruction sheet provided with the tension testing device should not be used. Use only the instructions provided herein.

NOTE 3: The reference (ref.) code shown in the tables are for factory use only.

FIGURE 1 (MSSMA405AE) Tension Settings

Belt Tension Measurements

Unbanded Belts

1. Place a straight edge along the top edge of the belt to be tested so that it spans both pulleys. Place the tension tester in the center of the belt and press down on the cap until the lower o-ring is in line with the straight edge, as shown.
2. Read the setting of the upper o-ring on the lbs scale of the tension tester.
3. Compare this value with the acceptable range in the appropriate table. If the belt is brand new (has never been run), use the range in the Initial Tension column. If the belt is not brand new, locate the acceptable range in the Final Tension column.
4. If the reading on the tension tester is less than the range shown in the table, the belt is too loose and must be tightened. If the reading is greater than the range shown in the table, the belt is too tight and must be loosened. Adjust the belt until the reading falls within the acceptable range in the table.

FIGURE 2 (MSSMA405AE) Measuring Belt Tension

Tensioning Banded Belts

48036QHE, QTG, QT

	Belt Deflect. (inches)	Initial Tension		Initial Tension		Belt Deflect (in.)	Initial Tension		Initial Tension	
WASH/ 2 SPEED WASH	9/32	6.6-9.2	KP3	5.1-7.1	KN	5/16	5.7-7.6	JP3	4.4-5.9	JN
DRAIN	5/32	5.7-7.6	JP3	4.4-5.9	JN	5/32	6.6-9.2	KP3	5.1-7.1	KN
$\begin{array}{ll} & 50 \mathrm{C} \\ \text { MAIN } & 60 \mathrm{C} \end{array}$	$\begin{aligned} & 35 / 64 \\ & 17 / 32 \end{aligned}$	10.5-14.3	NP3	8.1-11.0	NN	$\begin{aligned} & 17 / 32 \\ & 17 / 32 \end{aligned}$	10.5-14.3	NP3	8.1-11.0	NN
LOW SPEED EXTRACT	13/64	6.6-9.2	KP3	5.1-7.1	KN	3/16	9.62-13.0	MP3	7.4-10.0	MN

52038WE1, WTF, WTB, WTG, WTH

48032BHE, BTG, BTH
48036QHE, QTG, QT

	$\begin{gathered} \text { Belt } \\ \text { Deflect. } \end{gathered}$	Init Tens				Belt Deflect				
	(inches)	(lbs.)	(ref.)	(lbs.)	(ref.)	(in.)	(lbs.)	(ref.)	(lbs.)	(ref.)
WASH/ 2 SPEED WASH	1/4	5.7-7.6	JP3	4.4-5.9	JN	17/64	5.7-7.6	JP3	4.4-5.9	JN
DRAIN	3/64	6.6-9.2	KP3	5.1-7.1	KN	33/64	6.6-9.2	KP3	5.1-7.1	KN
E-1	9/32	6.6-9.2	KP3	5.1-7.1	KN	17/64	6.6-9.2	KP3	5.1-7.1	KN
E-2	39/64	6.6-9.2	KP3	5.1-7.1	KN	5/8	6.6-9.2	KP3	5.1-7.1	KN
UPPER JACK TO LOWER JACK LOWER JACK TO UPPER JACK			AND BELT NEED PECI RUC					AND BELT NEED PECI RUC	ONS	

52038WE1, WTF, WTB, WTG, WTH
60036 + 60044WE2 + WE3

Section

Bearing Assemblies

MAIN BEARING AND SEAL REPLACEMENT FOR DIVIDED CYLINDER MACHINES

This section applies to the front and rear cylinder shaft bearings of all divided cylinder machines (Rapid Load, Staph-guard ${ }^{\circledR}$, dye machines, etc.). It does not apply to jackshaft bearings, idler shaft bearings or bearings on open pocket machines.

The bearings covered by this section are double row, spherical roller, self aligning bearings; Koya, SKF, FMC, Torrington or equal. Referring to FIGURE 1, the rear (clean side on Staph-guard ${ }^{\circledR}$ models) bearing is firmly held in the bearing housing (bearing and seal carrier) by the shaft seal holder, preventing axial movement. The front (soil side on Staph-guard ${ }^{(8)}$ models) bearing is free to move axially in the bearing housing to accommodate thermal expansion of the shaft during operation and is thus the "floating" bearing. Both bearings are held in place on the tapered portion of the shaft by a bearing lockwasher and locknut.

The front and rear bearings are each protected from contamination from wash water by three spring loaded, lip type seals and a shaft seal leak-off cavity (that carries off any water that leaks past the main water seals) as shown in FIGURE 1.

Access to the bearings and seals for lubrication is provided by the various grease passages. Excess lubricant is excreted through the bearing and seal cavity leak-offs as shown on FIGURE 1. The bearings and seals must be lubricated regularly and the leak-off cavities flushed out periodically through the plugged cleanout connections, in strict accordance with the preventive maintenance procedures elsewhere.

If bearing replacement becomes necessary due to wear, it is essential that the bearings and seals are replaced. Seal replacement requires removal of the bearing housing and seal sleeve. (In rare instances where the seals are known to be in good condition, it is not necessary to remove the bearing housing, seals or seal sleeve when a bearing is replaced.) A pulling fixture is required to remove the bearing housing. A set of guide rods, a seal sleeve setting fixture and a bearing setting fixture are required for reinstallation of the housing. These tools are available for rental or purchase from the Milnor ${ }^{\circledR}$ factory and are pictured elsewhere in this section. Contact the factory two weeks in advance of repairs, when ordering these tools.

This maintenance is performed in the following order:

1. Remove old bearing(s). When removing both bearings, remove the front (soil side) bearing first.
2. Remove bearing housings, seal sleeves, and seals.
3. If both bearings were removed, install the bearing housing, seal sleeve, seals, and new bearing on the rear (clean side).
4. Install the bearing housing, seal sleeve, seals, and new bearing on the front (soil side).
5. Tighten bearing(s).

See the Main Bearing Assembly drawing for your machine for bearing component part numbers.

Removing the Bearing (Front or Rear)

1. Loosen, then remove the main drive belts and cylinder shaft pulley (if applicable) by lowering the drive base with the jacking bolts. Do not attempt to pry belts off with a pry bar or by rolling the sheave. Remove the bearing cover (or shaft seal holder) to expose the bearing.
2. Bend back the locking tang on the bearing lockwasher then remove the locknut and lockwasher.
3. The center tapped hole in the shaft end is an oil passage through which oil may be forced between the tapered shaft and the bearing inner race. Install a pipe fitting into this tapped hole as shown in figure to the right. Using a "Porto-Power" or similar hand operated hydraulic pump, force fluid into the passage. Pump hard to build up fluid pressure. This pressure will cause the inner race to expand slightly; just enough to free the tapered surfaces and allow the bearing to slip off easily. If the bearing is

FIGURE 2 (MSSM0303AE) Connection From Hydraulic Pump to Assist in Bearing Removal
inspection plate and use a timber to pry up the cylinder to remove cylinder weight from the bearings. Once the bearing is removed, the cylinder drops only approximately $1 / 32$ " before the shaft comes to rest on the shaft support.
4. Slide the bearing off of the shaft and if it is to be reused, place it on a clean surface and cover with a clean, lint free cloth.

Removing the Bearing Housing (Bearing and Seal Carrier), Seal Sleeve, and Seals (Front or Rear)

These procedures require the use of a pulling fixture and guide rods available from the Milnor ${ }^{\circledR}$ factory. With the bearing cover (or shaft seal holder) and the bearing removed, proceed as follows:

1. Remove the three bearing housing cap bolts and the grease lines from the bearing housing front plate. Install guide rods in two of the bolt holes, as shown in FIGURE 3.
2. Install the pulling fixture as shown in FIGURE 4, by placing each of the four threaded rods through a hole in the steel plate with hexnuts to the outside of the plate then screwing each rod into the appropriate tapped hole in the bearing housing (same holes as used to mount the bearing cover or shaft seal holder).

FIGURE 3 (MSSM0303AE)
Two Bearing Housing Guide
Rods in Position

FIGURE 4 (MSsm0303Ае) Bearing Housing Pulling Fixture in Position

NOTE: Step 2a or 2b below will cause the bearing housing to slide away from the shell. Shims were placed under one or more of the three bearing housing pads during factory assembly to align the housing and insure its being exactly parallel with the shaft. When removing the bearing housing, be sure to keep these shims separate and identified so that they may be returned to their proper location, otherwise the bearing and seal will be out of line and may be damaged after a short operating period. As a precaution in case the shims are lost during disassembly, you will find stamped next to the bearing housing the proper thickness of shims required (if any) under each adjacent bearing housing pad. The stamped number indicates the shim thickness in thousandths of an inch. For example, the number " 38 " indicates that $38 / 1000$ (.038") shims would be required under this pad.

2a. Tighten all four hexnuts on the threaded rods such that the pulling fixture plate is pressed against the shaft end. With an impact wrench, tighten down on the center bolt until the housing slides out, or

2b. If no impact wrench is available, simply continue to tighten down on each of the four hexnuts behind the pulling fixture plate, alternately and progressively, until the housing slides out. It may be necessary to place a spacer (approx. two inches long) between the plate and the shaft to provide enough clearance between the plate and the bearing housing.
3. Once the bearing housing is free of the shell, carefully slide it off of the guide rods and place on a clean work surface.
4. The seal sleeve will almost always remain on the shaft when the housing is removed. Remove the seal sleeve taking care not to damage or scar it and place it on a clean work surface.

Precautions for Bearing Replacement

The most important ingredient in successful bearing and seal installation is cleanliness. The bearing housing must be free of all foreign matter. The grease and leak-off passages must be blown clear and all foreign matter removed. You must have a clean work area. Keep your hands and tools free from grit and grime. Wash your hands before starting and as required during these procedures. Foreign matter is, without doubt, the most frequent cause of bearing failure, and one over which the manufacturer has no control.

Where cleaning is required, bearings, bearing housings and seal sleeves may be cleaned with the following solvents or cleaning agents (in strict accordance with the manufacturer's recommendations as such substances are generally toxic and/or explosive under certain conditions):

Benzene	Gasoline	Naptha
Chlorethane	Kerosene	Tricholorethylene
Freons	Mineral Spirts	

Do not, however, expose any components to the above substances for more than 24 hours and only use at room temperature. Never use the following solvents or cleaning agents: alcohols, cresols, phenols, flouro propanols, or other similar chemicals or mixtures.

NOTE: Hammer blows, overheating, or improper use of force can damage precision parts.

Replacing the Bearing Housing, Seal Sleeve, and Seals (Front or Rear)

1. With the seal sleeve removed, press all old seals out of the bearing housing. Remove the large o-ring from the outside of the housing. Thoroughly clean the bearing housing and flush out all grease passages to make certain they are unblocked. Remove the o-rings from the inside of the seal sleeve and clean the seal sleeve.
2. While the bearing housing is dissassembled, charge all grease passages with grease. This will assure that there are no blockages.
3. Replace the o-rings in the seal sleeve and the large o-ring on the outside of the bearing housing. Replace with new o-rings if the old ones are worn.
4. Press new seals into the bearing housing. You may gently work the seals in with a mallet and metal drift as shown in FIGURE 5.

A CAUTION A

Each seal must be of the proper material and face the proper direction. The type of material and direction the seal faces may differ from one seal to another within the same bearing housing and also from one type of machine to another. It is essential to consult the Main Bearing Assembly drawing for your machine for the proper part number and direction to face each seal.
5. Slip the seal sleeve into the bearing housing as shown in FIGURE 6 below right, using care not to damage or fold under any of the seal lips. Be sure to insert the sleeve in the proper direction (see Bearing Assembly drawing).

FIGURE 5 (MSSM0зозAE)
Installing Seals in Bearing Housing

FIGURE 6 (MSSM0з03AE) Installing Seal Sleeve in Bearing Housing

NOTE: If both housings are being installed, install the rear housing first.
6. With two of the three temporary guide rods in position on the shell, place the bearing housing onto the guide rods and install the seal sleeve setting fixture on to the bearing housing as shown in FIGURE 7. The seal sleeve setting fixture prevents the seal sleeve from being pushed out of the housing as the housing is inserted into the shell. Note that the seal sleeve setting fixture and the bearing setting fixture are very similar, but the seal sleeve setting fixture has a longer hub.
7. With a clean, lint free cloth, apply a coating of light machine oil to the outside of the housing, to assist in installation. Push the housing into the shell as shown in FIGURE 8. Once the housing is far enough into the shell to support itself, place any shims back into position between the housing and the shell. Remove, then replace guide rods if required to place shims under bearing housing pads.

FIGURE 7 (MSSM0303AE) Installing the Bearing Housing Setting Fixture onto Housing (42" machine shown)

FIGURE 8 (MSSm0зозАЕ)
Pushing the Bearing Housing into the Shell (60" Rapid-load machine shown)
8. Install the third guide rod, spacers if required, and hexnuts, using these to seat the housing fully, as shown in FIGURE 9. Remove the seal sleeve setting fixture.
9. Remove the guide rods and install the bearing housing cap bolts. See "BOLT TORQUE REQUIREMENTS" elsewhere, for proper torques.
10. With the grease gun, pump grease into the inner portion of the bearing cavity, such that when the bearing is installed, the space between the bearing and the seals will be approximately $1 / 3$ full of grease.

11 Proceed to "Measuring Unmounted Clearance . . ." below, even if both the front and rear bearings are being replaced. Once the rear bearing is installed, the bearing housing replacement procedures may then be repeated for the front (soil side) bearing housing.

FIGURE 9 (MSSM0303AE) Tightening the Bearing Housing into the Shell (42" machine shown)

Measuring Unmounted Clearance and Setting Bearing (Front or Rear)

The bearings used on Milnor ${ }^{\circledR}$ washer and dye extractors are the very best anti-friction devices available for these applications. However, the anti-frictional characteristics of the bearings will be reduced if they are not properly installed. It is of critical importance when installing these tapered roller bearings, to accomplish the following (A step by step procedure follows this synopsis):

1. Accurately measure the unmounted internal clearance of the bearing (gap between the rollers and outer race before the bearing is installed). This is an essential quality control measure.
2. Calculate the final internal clearance by subtracting the specified clearance reduction (amount that the internal clearance must be reduced when the bearing is tightened onto the tapered shaft) from the unmounted clearance.
3. Tighten the bearing onto the shaft until the final internal clearance as calculated is achieved and verified by measurement.

These measurements are taken in thousandths of an inch. Although this requires precise work, attention to detail and a good set of feeler gauges, it is the only way to insure that the bearing will be tightened onto the shaft to precisely the right tension. If you have any questions on performing the measurements or adjustments described below, your local bearing supplier or the Milnor ${ }^{\circledR}$ factory can assist you. Although these procedures require precision over and above that normally required for laundry room maintenance, they are standard in bearing installation and absolutely essential:

NOTE: Step 1 which follows, requires a good set of feeler gauges including .001" through $.010^{\prime \prime}$ in thousandths of an inch increments. Contact your local bearing supplier.

1. When you are ready to proceed (and not before) remove the new bearing from it's box or protective wrapping. Do not attempt to clean the bearing or wash out the preservative coating. On a clean work surface, stand the bearing on edge and insert a .003 feeler gauge into the bearing as shown in FIGURE 10, at right. The gauge should be inserted just inside the outer race between two rollers and worked through to the opposite row of rollers. Rotate the inner race of the opposite row so that the end of the feeler gauge is caught between a roller and the outer race.
2. Try to pull the gauge straight out. If it comes out, increase the size of the gauge by .001 ". If it does not come out, decrease the gauge by .001 ". The thickest feeler gauge that will come

FIGURE 10 (MSSM0303AE) Measuring Bearing Unmounted Clearance (bridge for 42" machine shown) out is the unmounted internal clearance of the bearing.
3. Compare the measured clearance with the "Unmounted Clearance" in the table below. If the measured clearance is not within the range shown, do not use the bearing. Contact your bearing supplier for an exchange.

NOTE 1: The clearances listed in the chart are industry standards and therefore apply to all brands of bearings supplied by Milnor ${ }^{\circledR}$. If other sources of bearings are used, refer to the manufacturer's instructions for proper clearances.
NOTE 2: To locate your bearing on the chart, match the first five characters of the manufacturer's part number (not the Milnor ${ }^{\circledR}$ part number) with those in the chart. For example, for a manufacturer's part number 22217LBK, find under "Manufacturer Part Number" the line "22217 . . ."

Table of Bearing Clearances

Manufacturer Part Number	Unmounted Clearance		Clearance Reduction	
	Minimum	Maximum	Minimum	Maximum
$22330 \ldots$.0071	.0091	.002	.003
$22213 \ldots$.0030	.0039	.001	.002
$22216 \ldots$.0028	.0037	.001	.002
$22217 \ldots$.0044	.0057	.0015	.0025
$22312 \ldots$.0030	.0039	.001	.002
$22316 \ldots$.0037	.0049	.001	.002
$22320 \ldots$.0044	.0057	.0015	.0025
$22328 \ldots$.0063	.0081	.002	.003
$23220 \ldots$.0044	.0057	.0015	.0025

4. Calculate and record the final internal clearance by deducting the "Clearance Reduction" for your bearing (see above chart) from the measured clearance. For example, if you measured .004 and the clearance reduction is .001 to .002 , then the final internal clearance should be between .002 and .003 .
5. Hand pack the bearing with grease by rotating the inner race and rollers, forcing grease between all rollers.

NOTE: The bearing will be set into position in Step 6. If both front and rear bearings are being installed, the rear (clean side on Staph-guard ${ }^{\circledR}$ models) bearing should be set in position first because it is the fixed bearing.
6. Set the bearing into the housing (with the taper facing the proper direction) and seat the bearing using the bearing setting fixture. This fixture is installed in similar fashion to the seal sleeve setting fixture. If you have just set the rear bearing and the front bearing housing is yet to be installed, leave the bearing setting fixture in place for now.
7. If you have just set the rear bearing and the front bearing housing is yet to be installed, repeat all steps in bearing housing installation, measuring unmounted clearance and setting bearing, for the front bearing and housing. The bearing setting fixture should not be removed from the rear housing until it is needed to seat the front bearing. This will prevent rear bearing components from being pushed out of position by the shaft as the front housing components are seated. Remove the bearing setting fixture from the front housing once the bearing is seated.

Tightening Bearing(s) (Front and/or Rear)

1. Once both bearings are seated, or if only one bearing was replaced, install the bearing lockwasher(s) and locknut(s). Use a hammer and a metal drift as shown in FIGURE 11, to tighten the locknut. It is imperative to only tap lightly and to assure that metal chips from the drift or locknut do not fall off and contaminate the bearing. If both bearings are being tightened, work between the front and rear bearings and turn the basket by hand periodically, while tightening the locknut(s).
2. After tightening the bearing(s) onto the tapered shaft, check the internal clearance as pictured in FIGURE 12, by working a feeler gauge between the outer race and a roller of the outer row then between the outer race and a roller of the inner row.

NOTE: Sometimes, when setting the bearings, all the load is taken by only one row of rollers (although the load would quickly equalize on both rows after the machine has run for only a few minutes). If all the load is taken by one row, you will get an erroneous clearance reading. It is therefore, necessary to use the feeler gauge to measure the clearance of both rows of rollers. With the bearing in place on the machine it is admittedly rather difficult to get a feeler gauge back past the first row of rollers to measure the second but it must be done.
3. If one row of rollers is tight but the other has measurable clearance, tap lightly on the end of the shaft nearest the tight row of rollers to cause the shaft to shift axially and equalize the roller loading. Adjust the bearing tightness to achieve the internal clearance previously calculated.
4. When the proper internal clearance has been attained, lock the nut by bending over the matching tang on the lockwasher, making sure that all unused tangs are bent as near the nut as possible so that they will not rub against the bearing roller cage.

Check each unused tab individually to insure this.

FIGURE 11 (MSSM0303AE)
Tightening the Bearing Locknut (42" machine shown)

FIGURE 12 (MSSM0303AE) Measuring the Mounted Internal Clearance of the Bearing (42" machine shown)
5. With the grease gun, fill the space between the bearing and the front of the housing $1 / 3$ full of grease.
6. Install the bearing cover plate or shaft seal holder, as appropriate. When installing the shaft seal holder, take care not to damage the seal as it is gently pushed over the shaft. Cover the keyway on the end of the shaft with tape to prevent the sharp corners of the keyway from cutting the seal lip. Also, make sure that the seal lip does not turn over as it passes over rough areas.

Pellerin Milnor Corporation
P. O. Box 400, Kenner, LA 70063-0400

Litho in U.S.A.

Parts List, cont.-Main Shaft Bearing Assembly

Used In	Item	Part Number	Description	Comments
All	34	15K147C	SKCPSC 1/2-13X1 BLK	60036,44SP2/SP3
all	35	02 18768D	GASKET=SHAFT SUPT DA3	
all	35	0218870	GASKET=SHAFTSUPPORT 2/60WEDU	60036,44WP2 ONLY
all	36	02 18768D	GASKET=SHAFT SUPT DA3	
all	37	0218105	BEARING CAP GASKET	ALL EXCEPT SP2/S3
all	38	54M015	GREASEFIT 60X36/60X44 1610BL	
all	39	5SP0CFESSV	NPTPLUG1/8SQSLDBLKSTL LVENT125	
all	40	53A039B	BODY=EL90MALE5/16X1/8 \#B69A-5A	
all	41	53A508	SLEEVE DELRIN 5/16"OD\#60PT-5	
all	42	53A509	TUBE INSERT 5/16"OD X .53"LG.	
all	43	53A019B	BODYMALECON5/16X1/8COM\#B68A-5A	
all	44	5NOE01KBE2	NPT NIP 1/4X1.5TBE BRASS STD.	
all	45	51P008B	PLUG SQSLD 1/4"BLK LVENT STEEL	
	46	X2 175053	HOLDER=SEAL=60SG SS W/AUTOSP	60036,44SP2/SP3 ONLY
all	46	X2 175052	HOLDER=SEAL=60SG CS W/AUTOSP	72044SP2/SP3 ONLY
all	47	24S111	SEAL 3X4.00X.437\#21158-2175	SP2/SP3 MACHINES ONLY
all	48	15K147C	SKCPSC 1/2-13X1 BLK	60036,44SP2/SP3 ONLY
all	48	15K162	HXCAPSCR 1/2-13UNC2AX1.5 GR5 P	72044SP2/SP3 ONLY
all	49	0218105	BEARING CAP GASKET	SP2/SP3 MACHINES ONLY
all	50	56S22316T	SPHEROLBRG KOYO\#22316RKW33C3FY	ALL EXCEPT 72044WP2NP3
all	50	56S23220T	SPHEROLBRG NTN\#23220BL1KD1C3	72044WP2MP3 ONLY
all	51	56AHN16	AN16 BEARING LOCKNUT	ALL EXCEPT 72044WP2NP3
all	51	56AHN20	AN20 BEARING LOCKNUT	72044WP2MP3 ONLY
all	52	56AHW16	W16 BEARING LOCKWASHER	ALL EXCEPT 72044WP2NWP3
all	52	56AHW20	W20 BEARING LOCKWASHER	72044WP2/WP3 ONLY
all	53	53A060A	NUT BRASS 5/16 COMP\#61A-5	

Section

Frame, Pivots and Suspension

SUSPENSION ADJUSTMENTS FOR DIVIDED CYLINDER MACHINES

The suspension system on Milnor ${ }^{\circledR}$ Hydro-cushion ${ }^{\circledR}$ machines is adjusted and thoroughly tested at the factory. It should not require subsequent adjustment unless the machine is distorted during shipment or installation or unless some component of the system, such as a Hydro-cushion ${ }^{\circledR}$ cylinder is replaced.

There are two primary objectives when adjusting the suspension system on any Hydro-cushion ${ }^{\circledR}$ machine model:

1. To position the shell in the proper location within the frame (hanging dimensions) to maximize freedom of movement of the shell and to insure proper draining, and
2. To adjust the length of up and down travel at each of the push-down locations (push down travel) so that the shell will not be distorted (racked) when pushed down.

FIGURE 1 (MSSm0302AE)
Hydro-cushion ${ }^{\circledR}$ Suspension System Components (does not depict a specific machine)

All Milnor ${ }^{\circledR}$ Hydro-cushion ${ }^{\circledR}$ machines contain the following suspension system components (as shown on the typical system on the previous page):

1. Hydro-cushion ${ }^{\circledR}$ cylinder-which suspend the shell and cylinder within the frame and provide vibration damping during extraction.
2. Pneumatic push down devices (air bags)—which when inflated, force the shell downward where it is held against rigid pads during loading, unloading, washing, and draining.
3. Metal or rubber pads-some rigidly fixed to the shell and some rigidly fixed to the frame, which come in contact when the shell is pushed down.

The actual configuration of these components varies from model to model.

How Shell Adjustments are Made

Regardless of machine model, repositioning of the shell is always accomplished by adjusting the nuts at the top of the upper Hydro-cushion ${ }^{\circledR}$ shafts. To move the shell up or down at the location of any Hydro-cushion ${ }^{\circledR}$, see FIGURE 2 and proceed as follows:

A CAUTION A

These procedures should be accomplished with power to the machine locked off.

1. Straighten the tongues on the keyed lock washer using pliers, screw driver, etc.
2. Loosen the lock nut (upper hex nut) and move it all the way up to the top of the shaft, but do not remove it.
3. Use the adjusting nut (lower hex nut) to "crank" the shaft up or down as required.
4. Once final adjustment is made, while holding the adjusting nut to prevent it from turning, retighten the lock nut against the adjusting nut (with the lock washer between).
5. Rebend the tongues on the lockwasher as before, to prevent movement of the nuts.

FIGURE 2 (MSSMM0302AE)
Hydro-cushion ${ }^{-1}$ Upper Shaft and Adjusting Nuts

Shell Hanging Dimensions and Adjustment Procedures

To adjust the shell of a divided cylinder machine, proceed as follows:

1. Locate the shell hanging dimension for your machine in the table below and adjust your machine accordingly. Take measurements on the left and right sides of the shell, to assure that the shell is horizontal, left to right.
2. The shell and cylinder should be level front to back. Check this with a bubble level, as shown in FIGURE 3.
3. If further adjustment is required in order to level the cylinder, make small adjustments at all four corners. For example, if the cylinder slopes down to the front, try raising the two front corners by $1 / 16^{\prime \prime}(2 \mathrm{~mm})$ and lowering the two rear corners by $1 / 16^{\prime \prime}(2 \mathrm{~mm})$. Always split the difference.

NOTE: Only slight deviations from the dimensions shown should be used to level the shell. If large deviations are required, this may indicate that the frame is out of level. If so, this condition must be corrected before attempting to level the shell.

FIGURE 3 (MSSM0302AE)
Shell Hanging Dimensions for Divided Cylinder Machines
(Left side view of 60044WE shown)

Push-Down Travel Dimensions and Adjustment Procedures

ACAUTION A

Some of the following procedures require power to the machine. Take the necessary precautions to assure that no one operates the machine controls while personnel are adjusting the push-down components.

42" Divided Cylinder Machines

The push-down stops on these machines consist of brackets attached to the shell and rubber rest pads, mounted atop the base pads (see figures below) which make contact when the shell pushes down. The rubber rest pads sit in metal pans and are raised or lowered by adding metal shims to or removing the shims from inside the pans. Extra shims and adhesive for securing the shims were supplied with your machine.

There is no specific push-down travel dimension for these machines; however, length of travel must be adjusted as follows:

1. With the Master switch set to off, and the shell hanging free, measure the gap between each bracket and base pad.
2. Add or remove shims from the appropriate pads as required to make all four gaps equal and to insure that no rest pad protrudes completely from its metal pan.

Test for equal length of travel at all four locations as follows:
3. With four sheet metal shims of equal thickness, set one shim on top of each rubber rest pad, such that at least a one inch length of the shim overhangs the outside edge of the pad.
4. Set the Master switch to manual, causing the shell to push-down.

5. With the shell pushed down, attempt to pull each test shim out from between the bracket and rubber pad. The test shims should all be tight. If any shim(s) are not pinched tightly between the bracket and pad, take note of which one(s) are not.

Make final adjustments as follows:
6. Set the Master switch to off, remove the test shims and make the necessary changes to the shims below the rubber pads as indicated by the above test.
7. Repeat Steps 3 through 6 as required, until this test is successful.
8. Once the adjustments are completed, secure all shims and rubber rest pads with the adhesive provided.

60" Divided Cylinder Machines

These machines have push-down stops on the four corners of the frame which appear as shown in FIGURES 5 and 6 . When pushed down, the ring weldments (which move with the shell) must seat firmly onto the plugs which are mounted atop the base pads. The push-down travel dimension must assure that 1) the ring weldments and plugs are far enough apart when the shell is not pushed down, so as not to interfere with the free movement of the shell, and 2) that all four stops are in solid contact when the shell is pushed down. To accomplish this, proceed as follows:

1. With the Master switch set to off and the shell hanging free, remove the bolts securing the ring weldments to the mounting brackets. Set each ring weldment on top of its respective plug, removing any shims which may have been used and placing them next to the ring weldment.
2. Measure the gap between the top of the ring weldment and the bottom of the mounting bracket, at each location.

FIGURE 5 (MSSM0302AE) Shimming Ring Weldments

FIGURE 6 (MSSM0302AE) Reconnecting Ring Weldments
3. Stack shims on top of the ring weldment as required to make each gap exactly 2 inches as shown in FIGURE 5. If the gap at any location is less than 2 inches without shims, the shell must then be raised in the frame, using the procedures previously described.
4. Once the proper arrangement of shims is made, remount the ring weldment and shims to the mounting bracket (see FIGURE 6). Any extra shims may be stacked on the top side of the mounting bracket plate to which the ring weldment is attached.

Suspension Cylinder Locations Use with BMP701408

Pellerin Milnor Corporation
 P. O. Box 400, Kenner, LA 70063-0400

Note: A letter is stamped on the end of the upper bolt to designate the cylinder assembly.

FOR REPAIR PARTS:
HYDROCUSHION CYLINDER ASSEMBLY "B"
THROUGH HYDROCUSHION CYLINDER ASSEMBLY " K "

	MACHINE MODELS:								
POSITION:	$\begin{aligned} & \text { 42031 } \\ & \text { CP2,NP2 } \\ & \text { WP2,WP3 } \end{aligned}$	$\begin{aligned} & 42031 \\ & \text { SP2,SP3 } \end{aligned}$	42044 CP2,NP2 WP2,WP3 D7P	$\begin{aligned} & \text { 42044 } \\ & \text { SP2,SP3; } \\ & \text { SP2 SM } \end{aligned}$	42044 WP2 SM, WP3 SM	52038 WTL,WTN WP1	60044 WP2,WP3, WP2 SM, WP3 SM, SP2,SP3, SP2 SM	72044 WP2,WP3 DAI	$\begin{aligned} & 72044 \\ & \text { SP2,SP3 } \end{aligned}$
CYLINDER \# 1	B	B	c	c	c	D	K	H	G
CYLINDER \#2	B	C	B	c	c	D	K	H	G
CYLINDER \#3	B	c	B	c	c	D	K	F	G
CYLINDER \#4	B	C	C	C	C	D	k	F	G

Section

Control and Sensing Assemblies

VIBRATION SAFETY SWITCH ADJUSTMENTS

 What the Vibration Safety Switch DoesThe vibration safety switch pictured below is an important safety feature. If properly adjusted, the switch will momentarily actuate as a result of repeated machine movement caused by an out-of-balance condition. Table A B below illustrates the effect of the vibration safety switch actuation.

Table A-Effect of Tripping Vibration Safety Switch

Machine Model	Function of Vibration Safety Switch
30015,30020, and 30022	Disables high speed extract
All microprocessor-controlled washer-extractors not listed above, and all dye machines	De-energizes three-wire relay, effectively terminating machine operation

Adjustments

When the machine leaves Milnor ${ }^{\circledR}$, the actuator arm is ${ }^{B}$ tie-wrapped to prevent damage (except on 30015,30020 , and 30022 models). This tie wrap must be removed after the machine is set into position but before the machine is operated.

Adjustment of this switch from the factory setting is not recommended; however, it should be checked for proper functioning and adjusted if its proper setting is lost.

As shown at right in FIGURE 1, the unit consists of a sensitive micro-switch with an extended actuating arm supporting an eccentric weight. The weight may be adjusted by moving it up and down on the arm and by rotating it on the arm. In addition, the micro-switch itself may be tilted from side to side.

The sensitivity of the switch increases as the eccentricweight is raised on the actuating arm and decreases as the weight is lowered.

The unit should be adjusted so that the actuating arm will always reset by itself, this being accomplished by rotating either the switch or the weight to give just enough bias to cause the switch to reset. Check the adjustment by moving the arm to the left then slowly releasing it. Make sure the microswitch clicks when the arm is slowly released, thus indicating

FIGURE 1 (MSSMA408BE) Vibration Switch
that it has reset. In the released position the arm should rest lightly but definitely against the stop on the micro-switch case that prevents any further arm movement to the left.

For machines with rigid mounted shells, where the machine is bolted to a very substantial foundation, very little machine movement will occur for a given degree of out-of-balance. Under such conditions it may be better to adjust the switch to be very sensitive. With less substantial foundations (e.g., ones where the sub-soil is mushy or springy or otherwise not as desirable), considerably greater machine movement will occur for a given degree of out-of-balance, in which case a less sensitive vibration switch setting may be indicated.

Water Level Float Chamber
Parts List-Water Level Float Chamber
Find the correct assembly first, then find the needed components. The item Ietters (A, B, C, etc.) assigned to
assemblies are referred to in the "Used In" column to identify which components belong to an assembly. The item

(1IIITID Pellerin Milnor Corporation $\begin{aligned} & \text { P. O. Box 400, Kenner, LA 70063-0400 }\end{aligned}$

Section

Chemical Supply Devices

RULES FOR THE FIELD INSTALLATION OF PUMPED-TYPE LIQUID SUPPLY SYSTEMS

APPLICABILITY: All Washer-Extractor Models

GENERAL

Pellerin Milnor Corporation does not guarantee machines against damage from corrosion caused by improper installation and/or operation of pumped-type liquid supply systems. The following precautions must be observed when pumps are used:

1. Always install the pumping unit lower than the discharge end of the chemical delivery tube as shown at right. This will prevent any excess chemical concentrate from dribbling out of the tube and onto unprotected machine surfaces when the machine is idle.

Merely putting a "drip loop" in the delivery tube won't help much. (It might reduce the dribble a little, but not enough to prevent damage.) The real solution is to install the pumps below the discharge end of the delivery tubes so excess chemical won't dribble out of the tube long after the pumps
 stop.
2. If the machine is also equipped with a flushing supply injector:
a. Always wire the new system so the appropriate flushing valve also operates whenever chemical is being injected. This will dilute the concentrated chemical with obvious advantages. If possible, the water flushing valve should remain on for a minimum of 30 seconds after the longest injection time for that chemical.
b. Always inject the chemical into a plastic cup (and direct the flushing water into the same cup). This way, any chemical that dribbles out

of the tube after the pump stops will be diluted by the water remaining in the cup.
3. Never inject any concentrated chemical directly onto any metal, rubber, or plastic surface of the machine other than the plastic cups provided.

It is not enough to merely inject the chemical onto a surface that will be subsequently flushed or wetted sometime during the wash process. This is because the "culprit" is the chemical which dribbles out later. The damage occurs when the residue of a chemical (even a diluted chemical) dries on a surface-as when a chemical dribbles out of the delivery tube after the last wash cycle is finished. As the chemical dries, the water content evaporates-leaving a deposit of a very concentrated chemical which is then free to attack the host surface throughout the night (or over the weekend) or until the machine is returned to service.

The only realistic solution is to make sure that the discharge end of each chemical delivery tube is above the pump so excess chemical left in the tube after the pump stops cannot dribble out later.

Supply Injector

Pellerin Milnor Corporation
P. O. Box 400, Kenner, LA 70063-0400

Parts List-Supply Injector
Find the correct assembly first, then find the needed components. The item letters (A, B, C, etc.) assigned to assemblies are referred to in the "Used In" column to identify which components belong to an assembly. The item numbers ($1,2,3$, etc.) assigned to components relate the parts list to the illustration.

Section

Water and Steam Piping Assemblies

Pellerin Milnor Corporation
P. O. Box 400, Kenner, LA 70063-0400

Litho in U.S.A.

Parts List-Water Inlet

Find the correct assembly first, then find the needed components. The item letters ($\mathrm{A}, \mathrm{B}, \mathrm{C}$, etc.) assigned to assemblies are referred to in the "Used In " column to identify which components belong to an assembly. The item numbers ($1,2,3$, etc.) assigned to components relate the parts list to the illustration.

Steam Inlet
6044WP2/WP3 \&
6044WP2/WP3 \& 6044WP2 SM (Single Motor)

Parts List, cont._Universal Actuators \& Mounting Hardware for Watts Ball Valves				
Used In	Item	Part Number	Description	Comments
all all all AA-AF,BE, CD,DA-DL BA-BD, BF-BJ, CA-CC,CE, CF all all all all BA,BB,BE, BJ,CE DA,DB, DD-DG DC,DH-DL BE,BG,BJ, CE-CF DA,DB, DD-DG DC,DH, DJ-DL all all all AB,DA-DL all all all all AA-AF BA-BJ CA-CF DA-DL	$\begin{aligned} & 11 \\ & 12 \\ & 12 \\ & 14 \\ & 14 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 19 \\ & 19 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 29 \\ & 29 \end{aligned}$		01Z HXLOCKNUT NYLON 10-24 UNC SS NM HEXCAPSCR 1/4-2OUNC2AX7/16 18-8SS HEXNUT 1/4-20UNC2 SS18-8 89354B WASHER=2.00"WATTS CRANK 89354B WASHER=1.25-1.50 WATTS CRANK 92683B SPACER=BALL VALVE CRANK STEM $01 Z$ FLTWASH 1/4 STD COMM SS18-8 HXCAPSCR 1/4-20UNC2X3/4SS18-8 01Z HX THIN LOCKNUT NYL1/4-20 SS 92271B BRKT=RHT AIR CYL SUPT-S/S 92271B 3" AIR-CYL SPT BRK R-SIDE RT 92271\# 3" AIR-CYL SPT BRK R-SIDE LT 92271B BRKT=LFT AIR CYL SUPT-S/S 92271B 3" AIR-CYL SPT BRK L-SIDE RT 92271\# RIGHT=3"AIR CYL SUPT BRKT HXCAPSCR 1/2-13UNC2AX2.5 FLTHRD SS SPACER ROLL.5ID1.75L.062T 304 SS FLATWASH 1.12ODX.656IDX.09T 304 SS HXLOCKNUT NYL 1/2-13UNC2 SS18-8 HXCAPSCR 1/2-13UNCAX2 18-8SS SPACER ROLL.5ID1.25L.062T S/S LOKWASHER REGULAR 1/2 SS18-8 HXFINJAMNUT 1/2-13UNC2B SS18-8 92651C ACTUATOR SUPPORT BRKT 1.0" 88407C ACTUATOR SUPPORT BRKT 1.25" 88243B ACTUATOR SUPPORT BKT 1+1/2 89473B ACTUATOR SUPPORT BRKT 2"VAL	

Watts Ball Valves and Repair Kits

8" \& 10" Stainless Dump Valve
42044WP2/CP2/SP2/SP3/NP2 52038WP1 60044WP2/WP3/SP2/SP3
72044WP1/D5N 72058SP2
Parts List-8" \& 10" Stainless Dump Valve
Find the correct assembly first, then find the needed components. The item letters (A, B, C, etc.) assigned to numbers ($1,2,3$, etc.) assigned to components relate the parts list to the illustration.

\begin{tabular}{|c|c|c|c|c|}
\hline Used In \& Item \& Part Number \& Description \& Comments

\hline \& A

B
C

D \& \[
$$
\begin{aligned}
& \text { SA } 28124 \\
& \\
& \text { SA } 36015 \\
& \text { SA } 28158 \\
& \text { SA } 36044
\end{aligned}
$$

\] \& | *8"SGL.DUMPVALVE 4244+52+60 |
| :--- |
| 10"SGL.DUMP VALVE 72WE+SG+WT |
| * BONNET+AIRCYL=8"SS DUMPVALV |
| * BONNET+AIRCYL=10"SS DUMPVAL | \& | 42044WP2/CP2/SP2/SP3/NP2 52038WP1 |
| :--- |
| 60044WP2/WP3/SP2/SP3 |
| 72044WP1/SP2, 72058D5N |
| 8" DUMP VALVE |
| 10" DUMP VALVE |

\hline all \& 1 \& 0202101 \& COMPONENTS CYLHEAD WTTAPPED HOLE \&

\hline all \& 2 \& 15U210 \& LOKWASHER MEDIUM $5 / 16$ ZINCPL \&

\hline all \& 3 \& 60C132 \& ORING 2"IDX3/16CS BUNA70 \#329 \&

\hline all \& 4 \& 0202068 \& AIRCYL-STAINLESS=DUMPVALVE \&

\hline all \& 5 \& 02 10585D \& TIE BOLT=5/16-18X7.875 PLTD \&

\hline all \& 6 \& 0301313 \& STOP=AIR CYL W/2+11/16STROKE \&

\hline all \& 7 \& 15G220 \& LTHX THIN LOKNUT 3/8-24 SSNTE \&

\hline all \& 8 \& 0202194 \& PISTONCUP=DUMPVALVE 2+3/8" \&

\hline all \& 9 \& 0202085 \& UP WASHER=2"OD=PISTON CUP \&

\hline all \& 10 \& 60C106 \& ORING 5/16ID 1/16CS BUNA70\#011 \&

\hline all \& 11 \& 0202185 \& WASHER=PISTON CUP COMP LIMIT \&

\hline all \& 12 \& 0202105 \& PISTON CUP WASHER STNLS STL \&

\hline all \& 13 \& 0306429 \& SPRING=2.110DX6.5FL 64\#1" \&

\hline all \& 14 \& 60C132 \& ORING 2"IDX3/16CS BUNA70 \#329 \&

\hline all \& 15 \& 24G020N \& ROLLED WASH.252ID NYLTITE 25W \&

\hline all \& 16 \& X2 02743 \& BONNET=2"DUMP VALVE \&

\hline all \& 17 \& 0218931 F \& GASKET=DUMPVALVE-1/60+72WEHU \&

\hline all \& 18 \& 02 16021। \& DUMPVAL STEM-4"+8"316SS \&

\hline all \& 19 \& 15G168 \& SQNUT 1/4-20UNC2 SS18-8 \&

\hline all \& 20 \& 15K086 \& HXCAPSCR 3/8-16NCX3/4 SS18-8 \&

\hline all \& 21 \& 15K041S \& HEXCAPSCR 1/4-20UNC2AX1 SS18-8 \&

\hline all \& 23 \& 02 16021E \& WASHER 3/8IDX1.250D DUMPVAL \&

\hline A \& 24 \& 0218068 \& 9 SEAT-RESILIENT=8"DUMPVALVE \&

\hline BI \& 24 \& 0306084 \& SEAT-RESILIENT=10"DUMPVALVE \&

\hline all \& 25 \& 5SPOKGFSS \& NPT PLUG 1/2 SOSOLID GALSTL \&

\hline all \& 26 \& 60C106 \& ORING 5/16ID 1/16CS BUNA70\#011 \&

\hline A \& 27 \& 0218796 \& DISC-8" DUMP VALVE S/S \&

\hline B \& 27 \& 0306083 \& DISC-10"DUMP VALVE S/S \&

\hline all \& 28 \& 15U245 \& FLTWASH 3/8 STD COMM 18-8 SS \&

\hline all \& 29 \& 03 06086G \& GASKET=10" DUMP VALVE BONNET \&

\hline A \& 30 \& 02 18931E \& BONNET-8"DUMP VALVE \& 8" DUMP VALVE

\hline B \& 30 \& 03 06086F \& BONNET=10"DUMP VALVE \& 10" DUMP VALVE

\hline All \& 32 \& 02 16021C \& BUMPER=DUMP VALVE BONNET \&

\hline all \& 33 \& 02 16021D \& DUMP VALVE BUMPER RETAINER \&

\hline A \& 34 \& W2 18931 \& * BODY=8"DUMPVALV=4244,60,52 \& 8" DUMP VALVE

\hline B \& 34 \& W3 06086 \& *BODY=10"DUMP VALVE 72 WE ,SG, T \& 10" DUMP VALVE

\hline A \& 35 \& 02-18107 \& GASKET=8"FLANGED DUMP VALVE \& 8" DUMP VALVE

\hline B \& 35 \& 03 06085D \& GASKET=10"FLANGEDUMP72D 8050 \& 10"DUMP VALVE

\hline
\end{tabular}

Section

Pneumatic Piping and Assemblies

SERVICING AIR CYLINDERS

This is the general procedure for rebuilding an air cylinder using a Milnor ${ }^{\circledR}$ furnished repair kit, once the air cylinder has been removed from the machine. See the specific air cylinder and major assembly parts drawing(s) for component identification and removal/replacement information.

Maintenance procedures require:

- Two threaded rods and nuts, twice the length of the tie bolts.
- The appropriate repair kit.

A CAUTION A

EXPLOSION HAZARD—Spring tension can cause air cylinder to burst apart with great force during dissassembly. You can be struck by air cylinder parts.

Follow maintenance instructions carefully.
Wear eye protection.
NOTE: Use a new locknut when re-assembling air cylinder (see the appropriate parts drawing).

1. Replace two diagonally opposite tie bolts with threaded rods and nuts as shown in FIGURE 1.
2. Tighten nuts on the threaded rods until they contact the air cylinder.
3. Remove the other two tie bolts and the nuts, washers, clips, and actuators from the external end of piston stem.

FIGURE 1 (MSSM0130AE)
Using Threaded Rods
4. Loosen nuts on threaded rods evenly, permitting cylinder heads to separate. Use only a few turns on one nut before moving to the other one. Continue until springs have no tension.

FIGURE 2 (MSSM0130AE) Correct Piston Cup Shape

FIGURE 3 (MSSM0130AE)
Distorted Piston Cup Shape
5. Note position and orientation of piston cup(s), washers, and springs. Replace worn parts, then reassemble in reverse order. Tighten locknut until it is just barely possible to turn the piston cup and washer assembly on the stem. Correct piston cup shape is shown in FIGURE 2. DO NOT overtighten, as this causes the piston cup to deform to the shape shown in FIGURE 3 and may cause piston to bind in cylinder.

Litho in U.S.A.
Parts List, cont.-Air Cylinder Assemblies

Parts List, cont.-Air Cylinder Assemblies				
Used In	Item	Part Number	Description	Comments
N	29	20L601C	ID TAG NAT'L \#1614 ALUM EMB LET "C"	
ALL	30	0306309	70310C RIGHTMOUNT=BRAKE CYL ZNC	RIGHT
ALL	31	0306308	70310C LEFTMOUNT=BRAKE CYL ZINC	LEFT
ALL	32	0202550	97437ABRKT=AIRCYL-RIGHT ZINC/CAD	RIGHT
ALL	33	0202547	LT BRACKET=AIRCYL CAD	LEFT
ALL	34	0202556	SUPPORT=AIRCYL CADSTL	
ALL	35	27B2750LOT	01Z SPC RROLL.562ID.937L.048T ZNK	
ALL	36	15K206	HEXCAPSCR M5-8X40MM 18-8SS	
ALL	37	15G235F	HXFNJAMNUT 9/16-12UNC2B ZINC GR2	
ALL	38	15 U 280	01Z FL+WASHER(USS STD)1/2 ZNC PL+D	
ALL	39	15G230	HXNUT 1/2-13UNC2B SAE ZINC GR2	
ALL	40	17A020	ADJ CLEVIS MACHINED 1/2-13 ZINC PLT	
ALL	41	17A065	01Z EYEEND 1/2-13 X2.25 ZINC	
ALL	42	17 A 040	CLEVISPIN 1/2"X1+3/8" DRILLED	
ALL	43	15H030	STDCOTTERPIN 3/32X3/4 ZINCPL	
ALL	44	27B34010SZ	SPCRROLL.512ID.625L.062T STLZC	
ALL	45	0217024	94302B SPRING-SS=DUMP 1.5OD4FL40\#/"	

Asco 3-way Solenoid Valves
Applicable Models
MILILB Pellerin Milnor Corporation $\begin{aligned} & \text { P. O. Box 400, Kenner, LA 70063-0400 }\end{aligned}$

COMPONENTS LABELED ($\boldsymbol{*}$) ARE CONTAINED in KIT " 000 ". SEE PARTS LIST
FOR OTHER AVAILABLE KITS.

Incorrect pressure: Pressure to valve must be within range specified on nameplate.
Excessive leakage: Disassemble valve and clean all parts. Replace all worn parts for best results

Pressure Regulators

Pellerin Milnor Corporation
Litho in U.S.A.
P. O. Box 400, Kenner, LA 70063-0400

Parts List-Pressure Regulators

Find the correct assembly first, then find the needed components. The item letters ($\mathrm{A}, \mathrm{B}, \mathrm{C}$, etc.) assigned to assemblies are referred to in the "Used In" column to identify which components belong to an assembly. The item numbers ($1,2,3$, etc.) assigned to components relate the parts list to the illustration.

Pellerin Milnor Corporation
Litho in U.S.A.
P. O. Box 400, Kenner, LA 70063-0400

Parts List—Quick Exhaust Valves

Find the correct assembly first, then find the needed components. The item letters (A, B, C, etc.) assigned to assemblies are referred to in the "Used In" column to identify which components belong to an assembly. The item numbers ($1,2,3$, etc.) assigned to components relate the parts list to the illustration.

[^0]: | Annual or Less Frequent Maintenance Items | | |
 | :--- | :--- | :--- |
 | Frequency | Component | Action |
 | Annual | Gear reducer
 FIGURE 27 | Change oil and clean magnetic
 plug (if so equipped) |
 | | Hydro-Cushions
 ®IGURE 2 | Change oil |
 | | Hydraulic system
 FIGURE 28 | Change oil |

